Chapter 1: Understanding H2O AutoML Basics

H2O cluster total cores:

H2O cluster healthy: H2O Connection ip:

H20 Connection port:

H2O Connection proxy:

R Version:

H2O Internal Security:

H2O cluster allowed cores: 12

12

TRUE

54321

NA FALSE

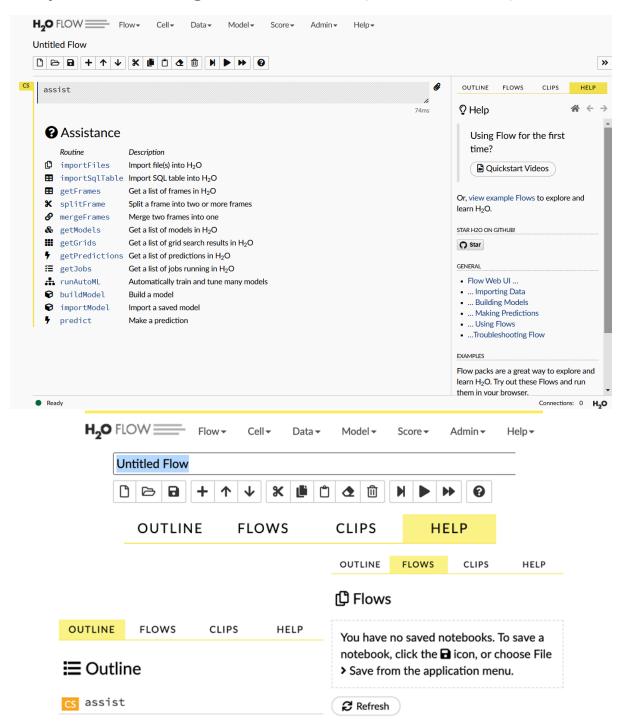
localhost

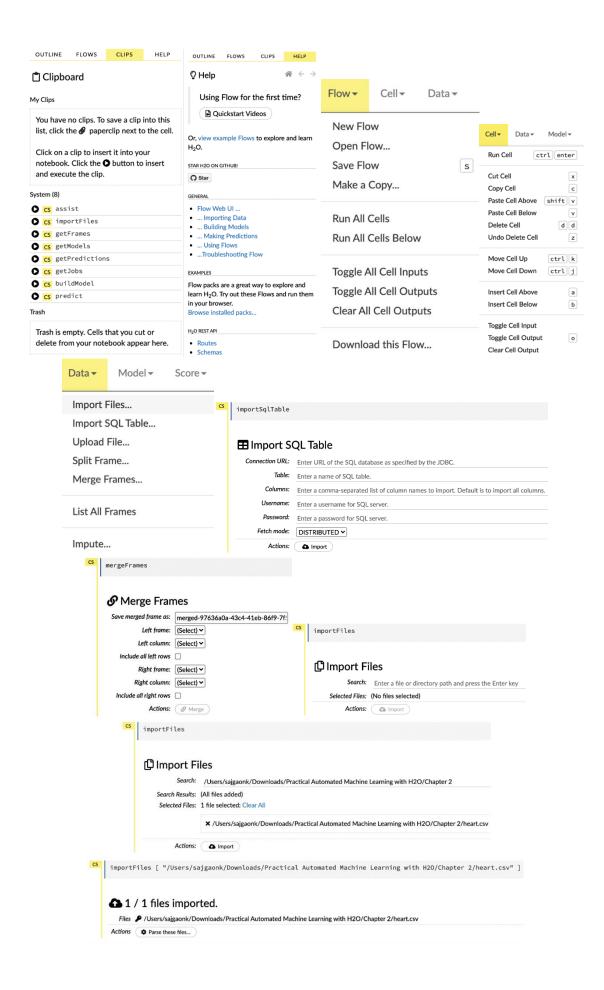
R version 3.6.1 (2019-07-05)

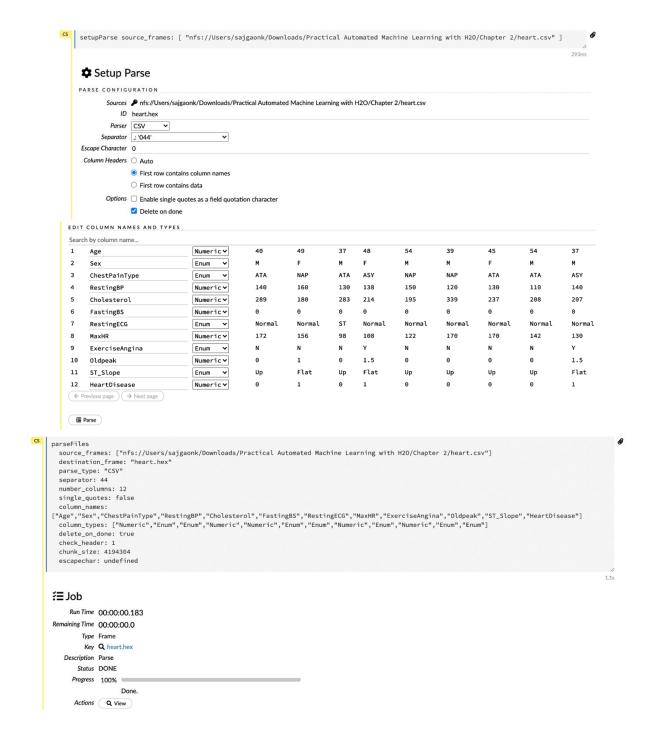
```
Checking whether there is an H2O instance running at http://localhost:54321 .... not found.

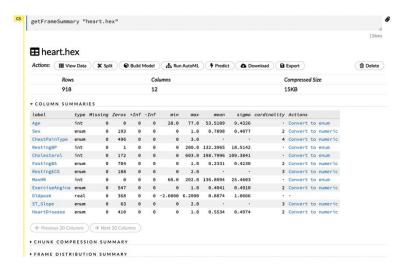
Attempting to start a local H2O server...
; Java HotSpot(TM) 64-Bit Server VM (build 17.0.2+8-LTS-86, mixed mode, sharing)
Starting server from C:\Users\ajgao\AppData\Local\Programs\Python\Python310\Lib\site-packages\h2o\backend\bin\h2o.jar
Ice root: C:\Users\ajgao\AppData\Local\Temp\tmpmswmzso9\h2o_ajgao_started_from_python.out
JVM stdout: C:\Users\ajgao\AppData\Local\Temp\tmpmswmzso9\h2o_ajgao_started_from_python.err
Server is running at http://127.0.0.1:54321
Connecting to H2O server at http://127.0.0.1:54321 ... successful.
H2O_cluster_uptime:
                                       01 secs
                                       Europe/Dublin
H20_cluster_timezone:
                                       UTC
3.36.1.2
H20_data_parsing_timezone:
H2O_cluster_version:
H2O_cluster_name:
H2O_cluster_total_nodes:
H2O_cluster_free_memory:
H2O_cluster_total_cores:
                                       H20_from_python_ajgao_etoqk4
                                        1
3.963 Gb
H2O_cluster_allowed_cores: 12
H2O_cluster_status: loc
H2O_connection_url: htt
                                       locked, healthy
http://127.0.0.1:54321
{"http": null, "https": null}
False
H20_internal_security:
Python_version:
                                       3.10.2 final
       H2O is not running yet, starting it now...
       Note: In case of errors look at the following log files:
              C:\Users\ajgao\AppData\Local\Temp\RtmpGOgnlL\filee50164e6416/h2o_ajgao_started_from_r.out
             C:\Users\ajgao\AppData\Local\Temp\RtmpGOgnlL\filee50756a39d3/h2o_ajgao_started_from r.err
       java version "17.0.2" 2022-01-18 LTS
       Java(TM) SE Runtime Environment (build 17.0.2+8-LTS-86)
       Java HotSpot(TM) 64-Bit Server VM (build 17.0.2+8-LTS-86, mixed mode, sharing)
       Starting H2O JVM and connecting: Connection successful!
       R is connected to the H2O cluster:
                                                         1 seconds 849 milliseconds
             H20 cluster uptime:
             H2O cluster timezone:
                                                          Europe/Dublin
             H2O data parsing timezone: UTC
             H2O cluster version: 3.36.1.2
H2O cluster version age: 6 days
             H2O cluster name:
                                                         H2O_started_from_R_ajgao_kcp486
             H2O cluster total nodes:
             H2O cluster total memory: 3.96 GB
```

C1	C2	СЗ	C4	C 5
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa

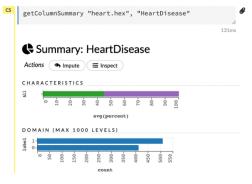

model_id	mean_per_class_error	logloss	rmse	mse
GLM_1_AutoML_1_20211221_224844	0.0254274	0.0730056	0.148617	0.0220871
StackedEnsemble_BestOfFamily_1_AutoML_1_20211221_224844	0.0254274	0.0889165	0.155702	0.0242432
StackedEnsemble_BestOfFamily_3_AutoML_1_20211221_224844	0.034188	0.234761	0.244628	0.0598429
StackedEnsemble_AllModels_4_AutoML_1_20211221_224844	0.0418803	0.212898	0.207104	0.042892
GBM_5_AutoML_1_20211221_224844	0.0423077	0.153568	0.196082	0.038448
XGBoost_3_AutoML_1_20211221_224844	0.0423077	0.171005	0.205224	0.0421171
StackedEnsemble_BestOfFamily_5_AutoML_1_20211221_224844	0.0423077	0.272447	0.208633	0.0435279
StackedEnsemble_AllModels_1_AutoML_1_20211221_224844	0.0425214	0.239748	0.247898	0.0614534
StackedEnsemble_BestOfFamily_2_AutoML_1_20211221_224844	0.0425214	0.242794	0.250567	0.0627836
GBM_2_AutoML_1_20211221_224844	0.0508547	0.164525	0.20544	0.0422055
XRT_1_AutoML_1_20211221_224844	0.0508547	0.154602	0.196747	0.0387094
DRF_1_AutoML_1_20211221_224844	0.0508547	0.155568	0.201598	0.0406418
XGBoost_2_AutoML_1_20211221_224844	0.0508547	0.230482	0.231617	0.0536463
GBM_4_AutoML_1_20211221_224844	0.0508547	0.159493	0.201367	0.0405486
StackedEnsemble_BestOfFamily_6_AutoML_1_20211221_224844	0.0508547	0.140577	0.198154	0.0392648
GBM_3_AutoML_1_20211221_224844	0.0508547	0.158446	0.203925	0.0415853
StackedEnsemble_AllModels_5_AutoML_1_20211221_224844	0.0508547	0.13417	0.197749	0.0391048
StackedEnsemble_AllModels_2_AutoML_1_20211221_224844	0.0515304	0.244011	0.252697	0.0638558
StackedEnsemble_AllModels_3_AutoML_1_20211221_224844	0.059188	0.183036	0.221313	0.0489796
StackedEnsemble_BestOfFamily_4_AutoML_1_20211221_224844	0.059188	0.246594	0.239717	0.0574643
XGBoost_1_AutoML_1_20211221_224844	0.0925214	0.478273	0.385523	0.148628

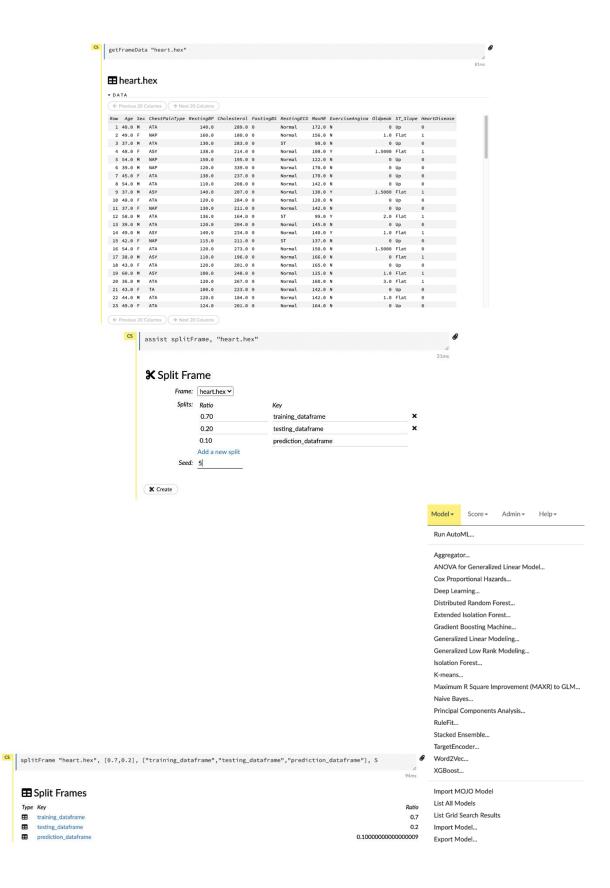

predict	Iris-setosa	Iris-versicolor	Iris-virginica
Iris-setosa	0.996763	0.0029518	0.000284888
Iris-setosa	0.999722	0.000171882	0.000106306
Iris-setosa	0.99952	0.000345017	0.0001354
Iris-setosa	0.999739	0.000157519	0.000103133
Iris-setosa	0.999975	2.05119e-06	2.28322e-05
Iris-setosa	0.999801	0.000108085	9.04886e-05
Iris-setosa	0.999452	0.000405189	0.00014317
Iris-setosa	0.999515	0.000349113	0.000135955
Iris-setosa	0.999335	0.000509734	0.000155041
Iris-setosa	0.999627	0.000251481	0.000121322


model_id	mean_per_class_error	logloss	rmse	mse
GBM_3_AutoML_8_20211222_02555	0.02503053	0.1441918	0.1790187	0.03204771
GLM_1_AutoML_8_20211222_02555	0.02503053	0.06051945	0.1367546	0.01870183
StackedEnsemble_AllModels_5_AutoML_8_20211222_02555	0.02503053	0.08676523	0.1584221	0.02509755
GBM_4_AutoML_8_20211222_02555	0.03296703	0.15864028	0.1871248	0.03501568
StackedEnsemble_BestOfFamily_2_AutoML_8_20211222_02555	0.03455433	0.22094574	0.2311208	0.05341682
StackedEnsemble_BestOfFamily_3_AutoML_8_20211222_02555	0.04090354	0.21032039	0.2249462	0.05060078
StackedEnsemble_BestOfFamily_4_AutoML_8_20211222_02555	0.04151404	0.15865856	0.1955133	0.03822546
StackedEnsemble_AllModels_4_AutoML_8_20211222_02555	0.04151404	0.18315141	0.1858142	0.03452691
StackedEnsemble_AllModels_3_AutoML_8_20211222_02555	0.04151404	0.17914264	0.2003599	0.0401441
StackedEnsemble_AllModels_1_AutoML_8_20211222_02555	0.04310134	0.2171082	0.2293443	0.05259883
StackedEnsemble_BestOfFamily_6_AutoML_8_20211222_02555	0.04310134	0.09428996	0.1672787	0.02798217
XRT_1_AutoML_8_20211222_02555	0.04884005	0.12547862	0.1850836	0.03425593
GBM_2_AutoML_8_20211222_02555	0.04884005	0.16726969	0.1934784	0.03743388
XGBoost_3_AutoML_8_20211222_02555	0.04884005	0.16601239	0.1983851	0.03935665
XGBoost_2_AutoML_8_20211222_02555	0.04884005	0.22718554	0.2309562	0.05334075
StackedEnsemble_BestOfFamily_5_AutoML_8_20211222_02555	0.04945055	0.26499193	0.221083	0.04887771
StackedEnsemble_BestOfFamily_1_AutoML_8_20211222_02555	0.05103785	0.10792744	0.187905	0.03530827
StackedEnsemble_AllModels_2_AutoML_8_20211222_02555	0.05103785	0.21228471	0.2263655	0.05124134
GBM_5_AutoML_8_20211222_02555	0.05738706	0.13549309	0.1926783	0.03712494
DRF_1_AutoML_8_20211222_02555	0.05738706	0.1279311	0.1848138	0.03415613
XGBoost_1_AutoML_8_20211222_02555	0.10989011	0.46102681	0.3760385	0.14140496

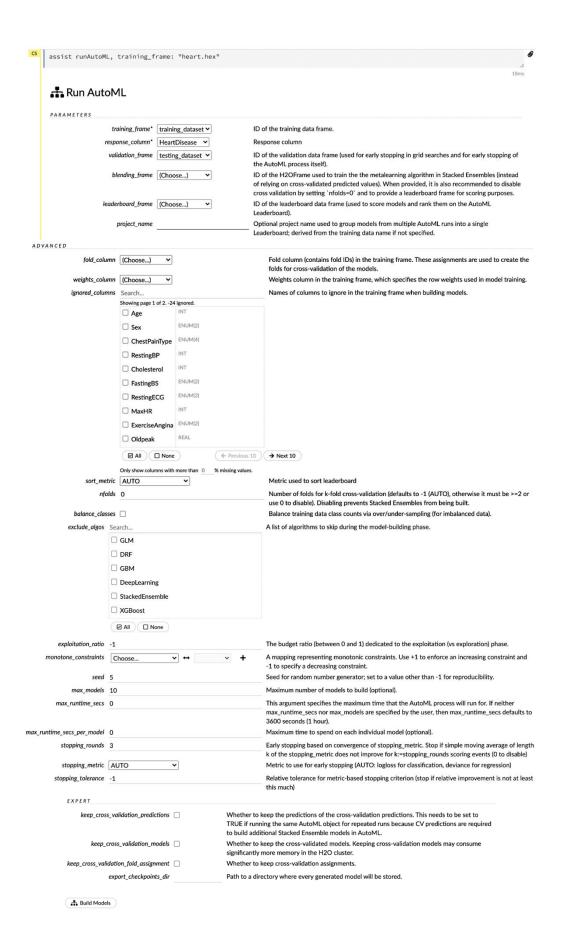

predict	Iris-setosa	Iris-versicolor	Iris-virginica
Iris-setosa	0.9876256	0.005647775	0.006726586
Iris-setosa	0.9869614	0.00706752	0.00597108
Iris-setosa	0.9888558	0.004439304	0.006704931
Iris-setosa	0.9874139	0.005875627	0.006710506
Iris-setosa	0.9873642	0.005833785	0.006802058
Iris-setosa	0.9876381	0.005642109	0.006719837

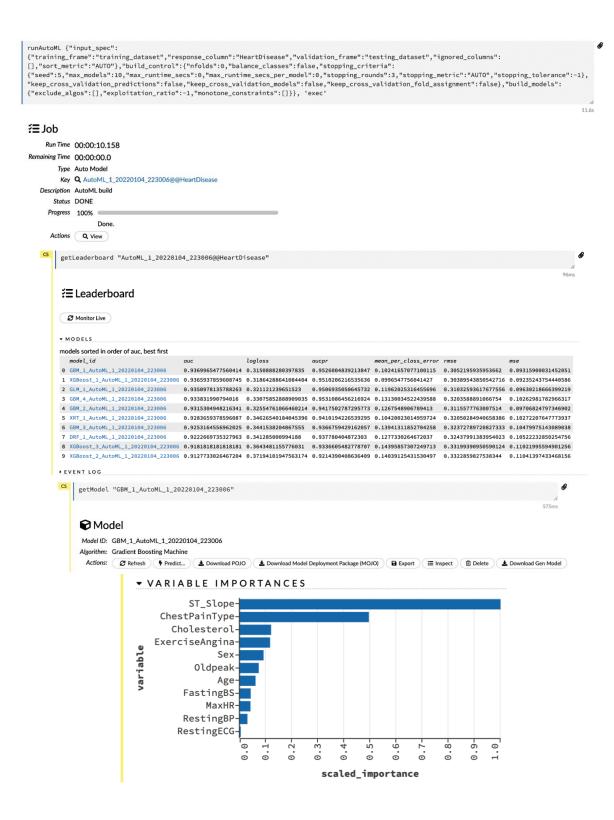
Chapter 2: Working with H2O Flow (H2O's Web UI)



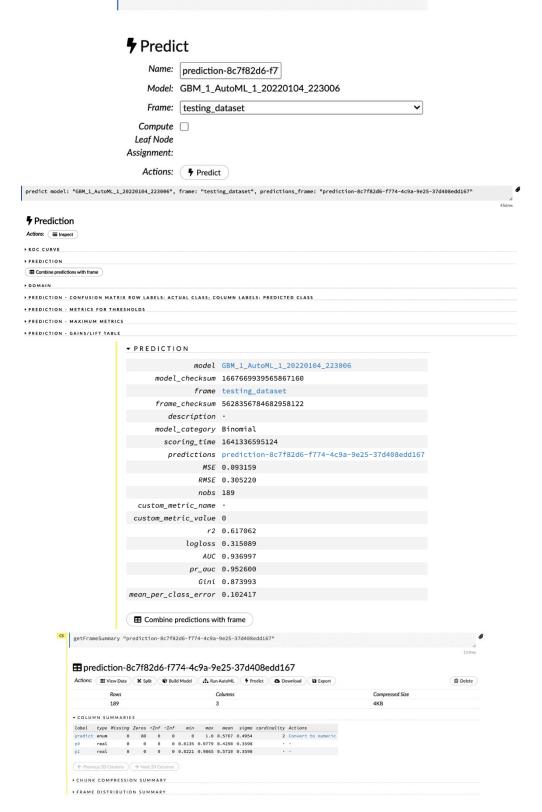

▼ CHUNK COMPRESSION SUMMARY

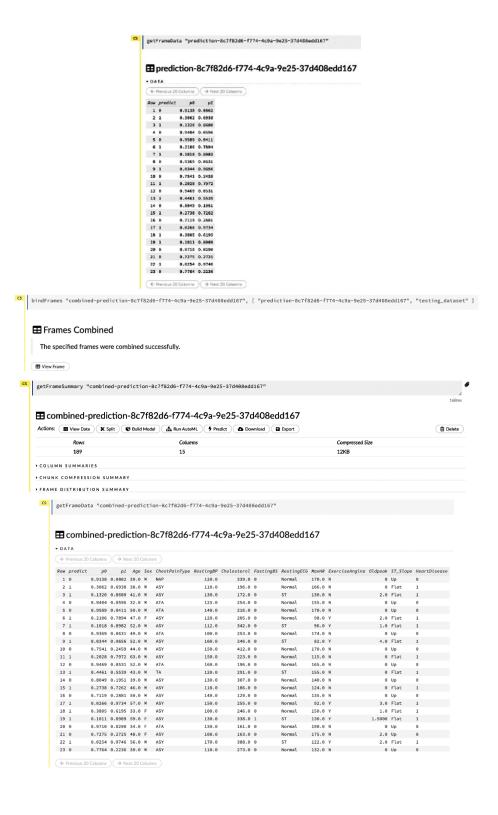
chunk_type	chunk_name	count	count_percentage	size	size_percentage
CBS	Binary	4	33.3333	740 B	7.7390
C1N	1-Byte Integers (w/o NAs)	6	50.0	5.8 KB	61.8699
C1S	1-Byte Fractions	1	8.3333	1002 B	10.4790
C2	2-Byte Integers	1	8.3333	1.9 KB	19.9122


▼ FRAME DISTRIBUTION SUMMARY


	size	number_of_rows	number_of_chunks_per_column	number_of_chunks
192.168.0.157:54321	9.3 KB	918.0	1.0	12.0
mean	9.3 KB	918.0	1.0	12.0
min	9.3 KB	918.0	1.0	12.0
max	9.3 KB	918.0	1.0	12.0
stddev	0 B	0	0	0
total	9.3 KB	918.0	1.0	12.0

Type Key




```
▼ COLUMN_TYPES
                                                              column_types
        ▼ OUTPUT
                                                              Numeric
                                original_names ·
                                                              Enum
                          cross_validation_models ·
                                                              Enum
                    cross_validation_predictions ·
         cross validation holdout predictions frame id .
                                                              Numeric
         cross\_validation\_fold\_assignment\_frame\_id .
                                                              Numeric
                                  model_category Binomial
                                                              Enum
                              cv_scoring_history ·
                          cross_validation_metrics ·
                                                              Enum
                    cross_validation_metrics_summary ·
                                                              Numeric
                                                              Enum
                                     start_time 1641335408430
                                       end time 1641335408849
                                                              Numeric
                                      run_time 419
                                                              Enum
                                default_threshold 0.538636
                                  init_f 0.184334
                                                              Enum
               ▼ OUTPUT - TRAINING_METRICS
               model GBM_1_AutoML_1_20220104_223006
                    model_checksum 1667669939565867160
                          frame AutoML_1_20220104_223006_training_training_dataset
                    frame_checksum 480731267713440174
                    description ·
                    model_category Binomial
                    scoring_time 1641335408839
                       predictions ·
                           MSE 0.086861
                             RMSE 0.294722
                         nobs 729
                 custom_metric_name ·
               custom_metric_value 0
                              r2 0.649596
                          logloss 0.294230
                             AUC 0.947350
                           pr_auc 0.949081
                             Gini 0.894700
               mean_per_class_error 0.108940
▼ OUTPUT - VALIDATION_METRICS
                model GBM_1_AutoML_1_20220104_223006
      model_checksum 1667669939565867160
                frame testing_dataset
      frame_checksum 5628356784682958122
         description ·
      model_category Binomial
       scoring_time 1641335408842
          predictions ·
                MSE 0.093159
                 RMSE 0.305220
                 nobs 189
  custom_metric_name .
                                                          Score ▼
                                                                      Admin▼
                                                                                Help▼
custom_metric_value 0
                   r2 0.617062
              logloss 0.315089
                                                          Predict...
                  AUC 0.936997
                                                          Partial Dependence Plots...
               pr_auc 0.952600
                 Gini 0.873993
```

mean_per_class_error 0.102417

List All Predictions

predict model: "GBM_1_AutoML_1_20220104_223006"

Chapter 3: Understanding Data Processing

-0.173636

-0.805367

-0.0118305

0.00284592

-1.72767

2.39237

0.688223

0.412912

-0.3909

-0.879536

0.573806

0.978736

0.283627

0.338589

2.23814

0.164441

-1.26735

1.17786

1.15021

0.181035

-0.335011

important_colu	mn_1 impo	rtant_column_2	important	_column_	3 important_c	olumn_4	impo	rtant_column_5
-1.0	08563	0.997345		0.28297	'8	-1.50629		-0.5786
1.6	65144	-2.42668		-0.42891	3	1.26594		-0.86674
-0.67	78886	-0.094709		1.4913	9 -	0.638902		-0.443982
-0.40	34351	2.20593		2.1867	'9	1.00405		0.386186
0.73	37369	1.49073		-0.93583	34	1.17583		-1.25388
-0.60	37752	0.907105		-1.4286	8 -	0.140069		-0.861755
	55619	-2.79859		-1.7715		0.699877		0.927462
	73636	0.00284592		0.68822		0.879536		0.283627
	05367	-1.72767		-0.390		0.573806		0.338589
-0.01	18305	2.39237	aluman C	0.41291		0.978736		2.23814
		important_c	olumn_6	impor	tant_column			
			1.03973		-0.4033	66		
			-0.12603		-0.8375	17		
			-1.60596		1.255	24		
		-(0.688869		1.660	95		
		(0.807308		-0.3147	58		
			-1.0859		-0.7324	62		
			-1.21252		2.087	11		
		(0.164441		1.150	21		
			-1.26735		0.1810	35		
			1.17786		-0.3350			
		n_2 important_colum						
-1.08563 1.65144	-2.42			-1.50629 1.26594	-0.5786 -0.86674		1.03973 0.12603	-0.403366 -0.837517
-0.678886	-0.094			-0.638902	-0.443982		1.60596	1.25524
-0.434351		0593 2.18		1.00405	0.386186		688869	1.66095
0.737369		9073 -0.935		1.17583	-1.25388		807308	-0.314758
-0.637752	0.907	7105 -1.42	868	-0.140069	-0.861755		-1.0859	-0.732462
-0.255619	-2.79	9859 -1.77	153	-0.699877	0.927462	-1	1.21252	2.08711

important_column_5	important_column_4	important_column_3	important_column_2	important_column_1
-0.5786	-1.50629	0.282978	0.997345	-1.08563
-0.86674	1.26594	-0.428913	-2.42668	1.65144
-0.443982	-0.638902	1.49139	-0.094709	-0.678886
0.386186	1.00405	2.18679	2.20593	-0.434351
-1.25388	1.17583	-0.935834	1.49073	0.737369
-0.861755	-0.140069	-1.42868	0.907105	-0.637752
0.927462	-0.699877	-1.77153	-2.79859	-0.255619
0.283627	-0,879536	0.688223	0.00284592	-0.173636
0.338589	0.573806	-0.3909	-1.72767	-0.805367
2.23814	0.978736	0.412912	2.39237	-0.0118305

words n	umerical_representation	letters
Hello	0	а
World	1	b
Welcome	2	С
То	3	d
Machine	4	
Learning	5	
other_words	numerical_representation	letters
How	0	а
Are	1	b
You	2	С
Doing	3	d
Today	4	е
Му	5	
Friend	6	
Learning	7	
H2O	8	
Artificial	9	
Intelligence	nan	

numerical_representation	letters	other_words	words
0	a	How	Hello
1	b	Are	World
2	С	You	Welcome
3	d	Doing	То
5		Му	Learning

numo	riaal r	onroc	ontatio	a lott	0.00	other w	arde.	words		C1	C2	C3
nume	ricai_i	epres)		other_w	How	Hello	_ n	an	nan	77
				1	a b		Are	World		94	14	-58
				2	С		You	Welcome		94	-26	-39
				3	d	D	oing	To		96	93	-56
				4	е		oday			85	44	-53
				5			My	Learning	g	58	-28	27
			(3		Fr	iend			84	63	92
				7		Lear	ning			78	-65	94
				8	Artificial			n	an	81	nan	
	9		9		Intellige	ence			-27	-61	13	
			C1	C2	C3	C1	C2	C3	C1		C2	C3
C1	C2	C3	-99	-18	75	-99	-18	75	-99		-18	225
nan	nan	77				-73	-10	58	-73		-10	174
94	14	-58	-73	-10	58	-33	nan	70	-33	r	nan	210
94	-26	-39	-33	nan	70	21	99	-61	21		99	-183
96	93	-56	21	nan	-61	-52	20	79	-52		20	237
-85	44	-53	-52	20	79		-98		-22		-98	57
58	-28	27		-98	19							
-84	63	92	nan	-58		nan	-58		nan			156
78	-65	94		-31	-9		-31			} .		-27
78	81	94	79	-26	nan	79	-26	nan	79	-	-26	nan
-27	-61	13	12	-81	66	12	-81	66	12		-81	198

	C1	C2	C3	C1	C2	C3	
	0	0	225	0	0	225	
	0	0	174	0	0	174	
	0	nan	210	0	0	210	
	21	99	-183	21	99	183	
	0	20	237	0	20	237	
	0	0	57	0	0	57	
	nan	0	156	0	0	156	
	0	0	-27	0	0	27	
	79	0	nan	79	0	0	
	12	0	198	12	0	198	
	age v	weight	max_s	peed	100_	meter_	time
0	age v	weight 46		55530	100_	meter_	_time NaN
0			16.75	· .	100_	meter_ 21.73	NaN
	13	46	16.75 15.08	55530	100_	_	NaN 2242
1	13 15	46 33	16.78 15.08 14.58	55530 39844	100_	21.73	NaN 2242
1 2	13 15 13	46 33 32	16.78 15.08 14.58 15.66	55530 39844 34233	100_	21.73	NaN 22242 8161 NaN
1 2 3	13 15 13 16	46 33 32 45	16.78 15.08 14.58 15.66	55530 39844 34233 59721	100_	21.73 22.34	NaN 22242 8161 NaN
1 2 3 4	13 15 13 16 13	46 33 32 45 39	16.78 15.08 14.58 15.66 19.7	55530 39844 34233 59721 11957	100_	21.73 22.34	NaN 22242 8161 NaN 9496
1 2 3 4 	13 15 13 16 13 	46 33 32 45 39	16.75 15.08 14.58 15.66 19.7	55530 39844 34233 39721 11957	100_	21.73 22.34	NaN 2242 8161 NaN 9496
1 2 3 4 	13 15 13 16 13 	46 33 32 45 39 46	16.75 15.08 14.58 15.66 19.7 13.23	55530 39844 34233 59721 11957 	100_	21.73 22.34 20.16	NaN 32242 8161 NaN 39496 NaN 34310
1 2 3 4 95 96	13 15 13 16 13 14 16	46 33 32 45 39 46 45	16.75 15.08 14.58 15.66 19.7 13.25 17.57	55530 39844 34233 59721 11957 31185 72064	100_	21.73 22.34 20.16	NaN 2242 8161 NaN 9496 NaN 4310
1 2 3 4 95 96	13 15 13 16 13 14 16 17	46 33 32 45 39 46 45 38	16.75 15.08 14.58 15.66 19.7 13.25 17.57 14.63 15.98	55530 39844 34233 39721 11957 31185 72064	100_	21.73 22.34 20.16 23.06 23.14	NaN 2242 8161 NaN 9496 NaN 4310 2284

100 rows × 4 columns

age	weight	max_speed	100_meter_time
13	41	17.9565	23.5558
16	45	13.6646	23.0656
15	44	18.1247	24.7465
15	39	14.621	23.7011
13	45	15.2694	25.8552
16	43	16.9983	24.6807
15	37	13.3174	24.7037
13	40	13.3024	21.8998
14	47	17.4593	26.3073
15	47	18.4853	22.5947

age	weight	max_speed	100_meter_time	C1	C2	СЗ	C1	C2	C3
13	41	17.9565	22.9804	0	6	12	0	6	12
16	45	13.6646	23.0656	1	8	9	1	8	9
15	44	18.1247	24.7465	2	2	4	2	2	4
15	39	14.621	23.7011	3	1	15	3	1	15
13	45	15.2694	25.8552	3	5	14	3	5	14
16	43	16.9983	24.6807	3	3	13	3	3	13
15	37	13.3174	24.7037	3	3	3	3	3	3
13	40	13.3024	21.8998	8	7	8	8	7	8
14	47	17.4593	26.3073	8	6	7	8	6	7
15	47	18.4853	22.5947	8	6	2	8	6	2

				C3	C2	C1	C3	C2	C1
	C3	C2	C1	12	6	0	12	6	0
	15	1	3	9	8	1	9	8	1
	14	5	3	4	2	2	4	2	2
	13	3	3	14	5	3	15	1	3
	12	6	0	13	3	3	13	3	3
C1	11	8	12	3	3	3	3	3	3
Today we learn Al	10	6	13	15	1	3	14	5	3
roddy we really a	9	8	1		·			Ū	
Tomorrow Al learns us	8	7	8	8	7	8	7	6	8
Today and Tomorrow are same	7	6	8	7	6	8	2	6	8
Us and Al are same	6	5	14	2	6	8	1	6	8

Animals

Mythical

	Dragon	0
	Unicorn	1
	Horse	1
	Lizard	1
	Goblin	0
C1	Dragon	0
Today	Horse	0
we	Horse	1
learn	Unicorn	0
Al	Dragon	1
	Goblin	0
Tomorrow	Lizard	1
Al	Lizard	1
learns	Unicorn	0
us	Dragon	1

Animals_target_encoded	Target 0 count	Target 1 count
Dragon	2	2
Unicorn	2	1
Horse	1	2
Lizard	0	3
Goblin	2	0

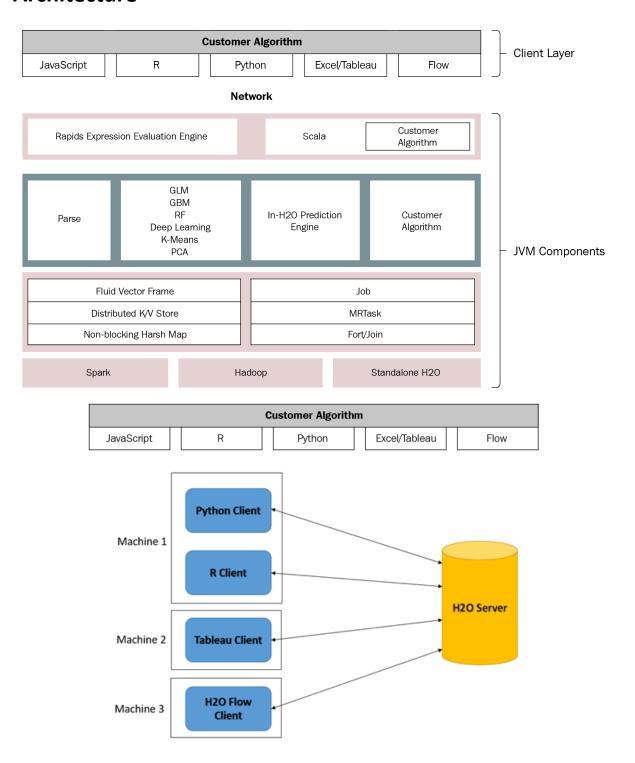
Animals_target_encoded	Target 0	Target 1	Probability of
	count	count	Target 1
			Occurring
Dragon	2	2	0.50
Unicorn	2	1	0.33
Horse	1	2	0.66
Lizard	0	3	1
Goblin	2	0	0

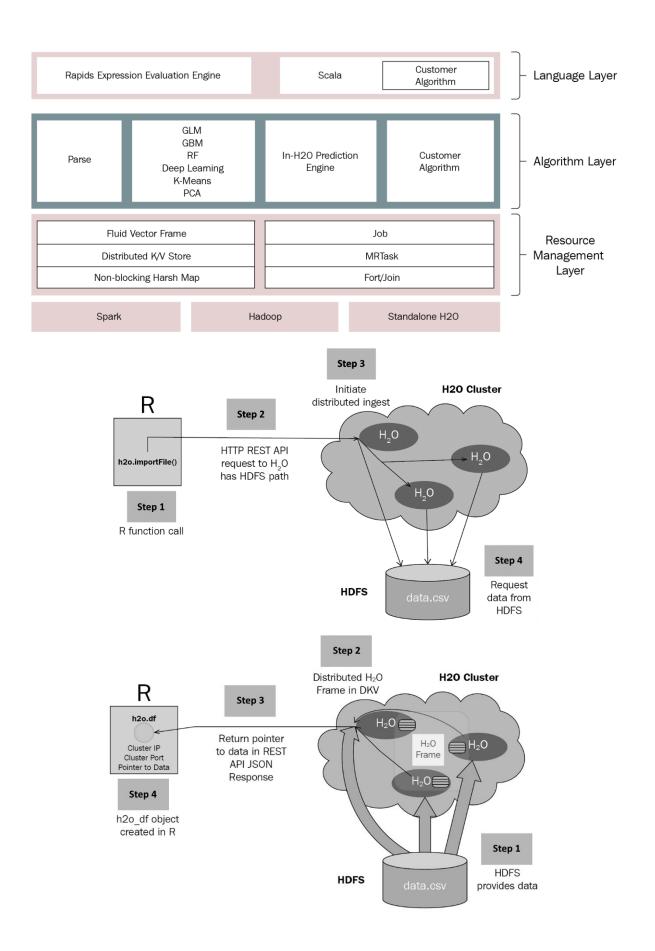
Animals	Mythical
0.50	0
0.33	1
0.66	1
1	0
0	1
0.50	0
0.66	0
0.66	1
0.33	0
0.50	1
0	0
1	1
1	1
0.33	0
0.50	1

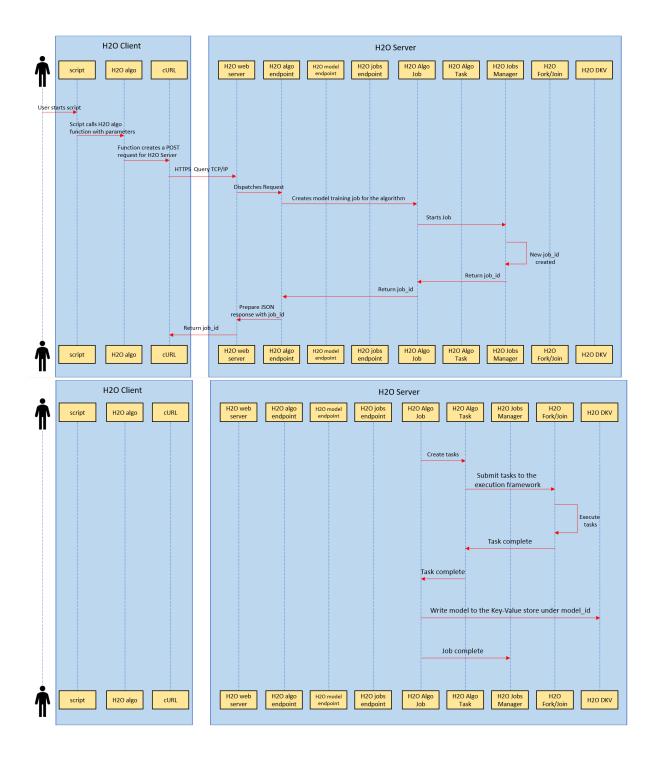
symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	width	height	curb- weight	engine- type	num-of- cylinders	engine- size	fuel systen
3	nan	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpt
3	nan	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpt
1	nan	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4	2823	ohcv	SİX	152	mpt
2	164	audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337	ohc	four	109	mpt
2	164	audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824	ohc	five	136	mpt
2	nan	audi	gas	std	two	sedan	fwd	front	99.8	177.3	66.3	53.1	2507	ohc	five	136	mpt
1	158	audi	gas	std	four	sedan	fwd	front	105.8	192.7	71.4	55.7	2844	ohc	five	136	mpt
1	nan	audi	gas	std	four	wagon	fwd	front	105.8	192.7	71.4	55.7	2954	ohc	five	136	mpt
1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	71.4	55.9	3086	ohc	five	131	mpt
0	nan	audi	gas	turbo	two	hatchback	4wd	front	99.5	178.2	67.9	52	3053	ohc	five	131	mpt
4)

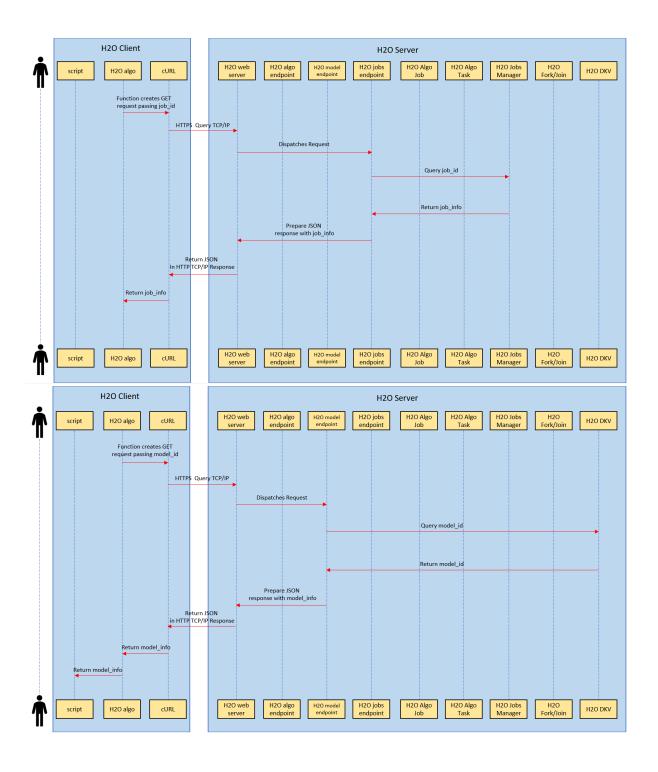
make	fuel-type	body-style	price
alfa-romero	gas	convertible	13495
alfa-romero	gas	convertible	16500
alfa-romero	gas	hatchback	16500
audi	gas	sedan	13950
audi	gas	sedan	17450
audi	gas	sedan	15250
audi	gas	sedan	17710
audi	gas	wagon	18920
audi	gas	sedan	23875
audi	gas	hatchback	nan

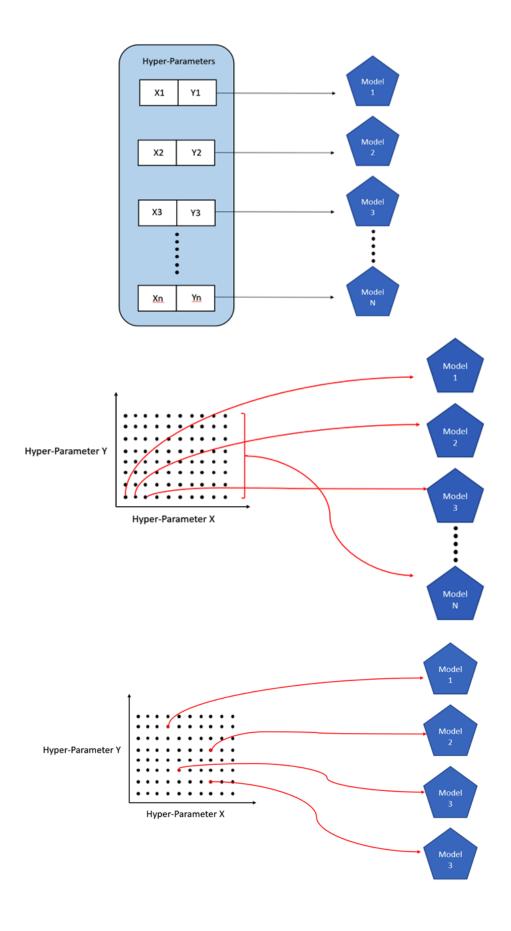
H2OTargetEncoderEstimator : TargetEncoder

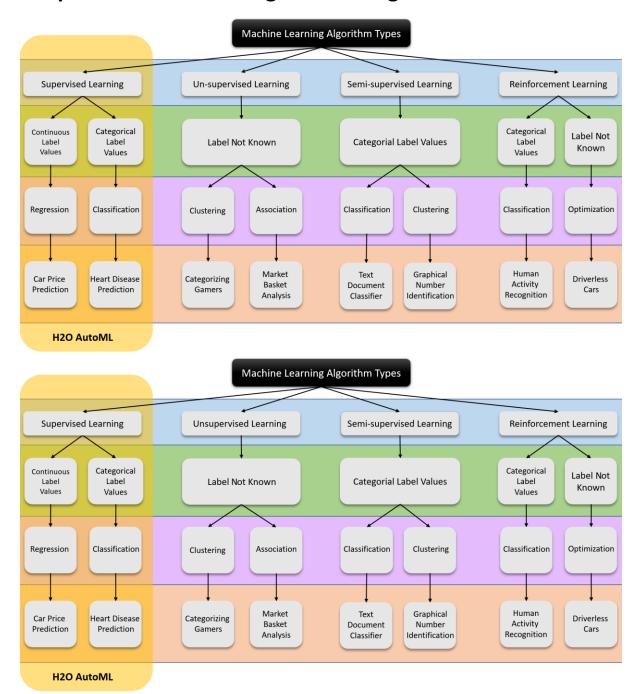

Model Key: TargetEncoder_model_python_1653850929913_2

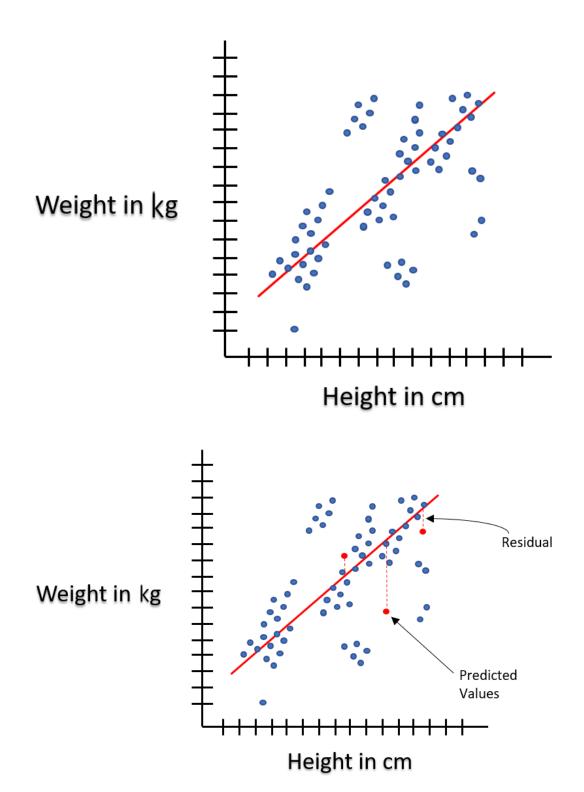

Target Encoder model summary: Summary for target encoder model

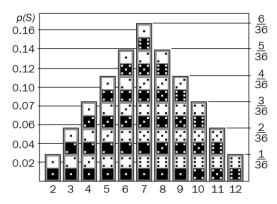

encoded_column_names	original_names	
make_te	make	0
fuel-type_te	fuel-type	1
body-style_te	body-style	2

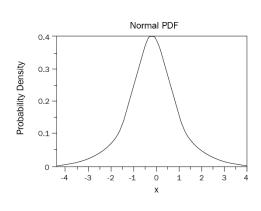

make_te	fuel-type_te	body-style_te	make	fuel-type	body-style	price
15498.3	13074	21890.5	alfa-romero	gas	convertible	13495
15498.3	13074.1	21890.5	alfa-romero	gas	convertible	16500
15498.3	13074.1	9722.24	alfa-romero	gas	hatchback	16500
16656	13074.1	14734.1	aud	gas	sedan	13950
16656	13074.1	14734.1	aud	gas	sedan	17450
16656	13074.1	14734.1	aud	gas	sedan	15250
16656	13074.1	14734.1	aud	gas	sedan	17710
16656	13074.1	11809.9	aud	gas	wagon	18920
26340.7	13074.1	14734.1	bmw	gas	sedan	16430
26340.7	13074.1	14734.1	bmw	gas	sedan	16925
make_t	e fuel-type_t	e body-style_to	e make	fuel-type	body-style	price
1665	6 13074.	1 14734.	1 audi	gas	sedan	23875
1665	6 13074.	1 9722.23	3 audi	gas	hatchback	nan
26340.	7 13074.	1 14734.	1 bmw	gas	sedan	24565
7790.1	2 13074.	1 14734.	1 dodge	gas	sedan	8558
815	1 13074.	1 9722.23	3 honda	gas	hatchback	7895
815	1 13074.	1 14734.	1 honda	gas	sedan	8845
1104	0 40074	4 44704	1 isuzu	gas	sedan	6785
	8 13074.	1 14734.	1 15020	_		
3412				gas	sedan	35550
	5 13074.	1 14734.	1 jaguar	gas gas	sedan hatchback	35550 6795

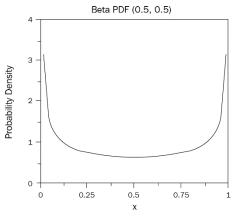

Chapter 4: Understanding H2O AutoML Training and Architecture

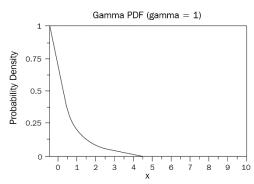


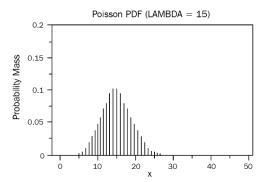


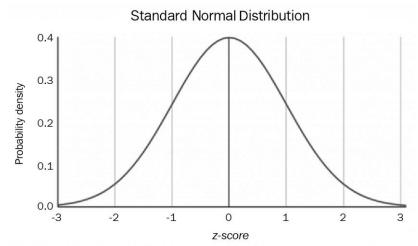


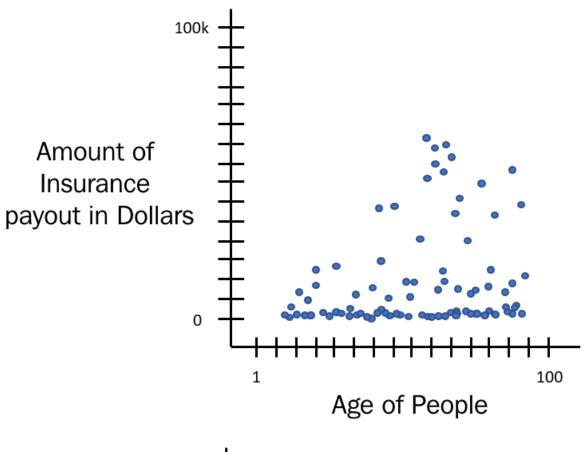


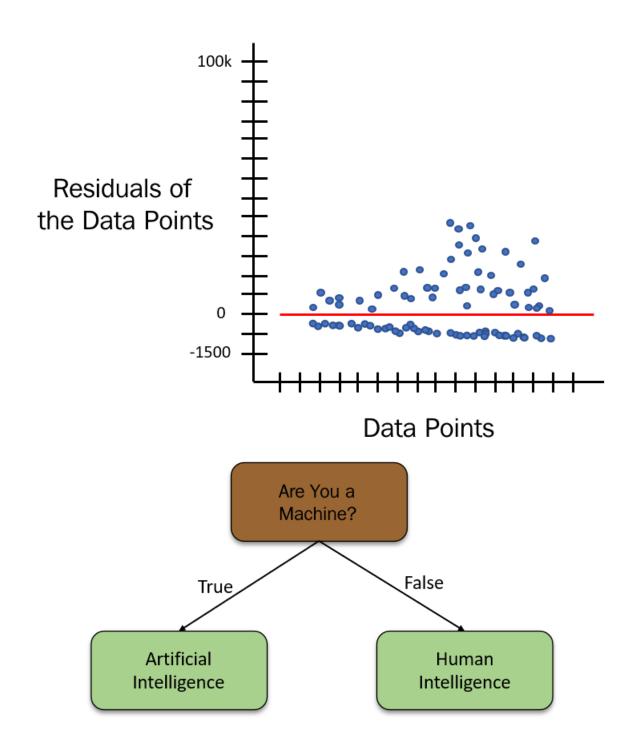

Chapter 5: Understanding AutoML Algorithms

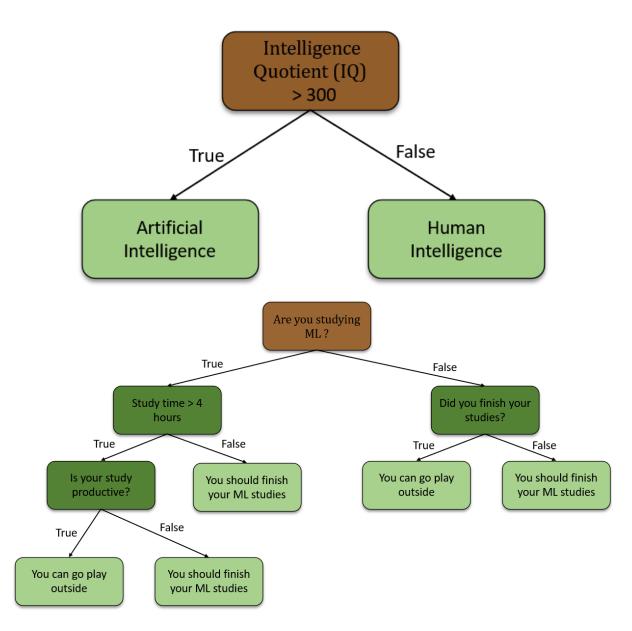


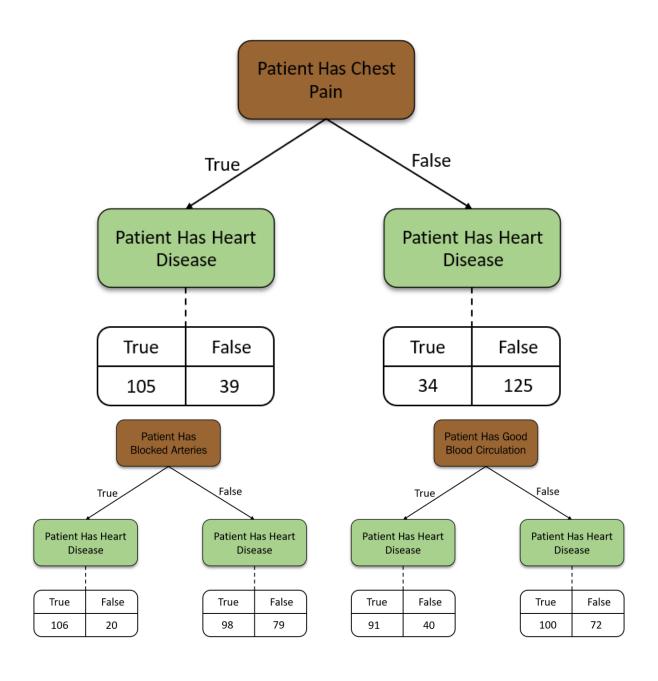


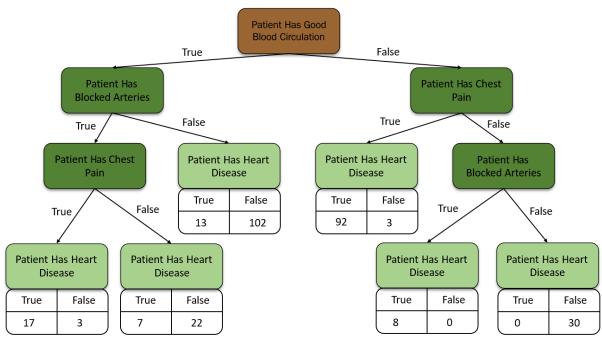


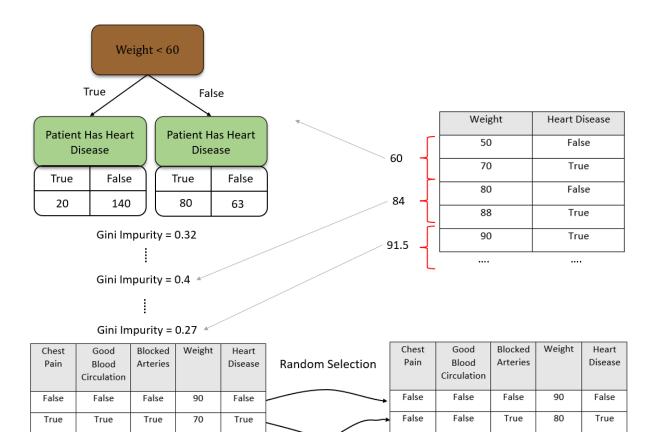











Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
False	False	False	False
True	True	True	True
True	True	False	False
True	False	N/A	True
False	False	True	True

Chest Pain	Good Blood Circulation	Blocked Arteries	Weight	Heart Disease
False	False	False	90	False
True	True	True	70	True
True	True	False	88	False
True	False	N/A	50	True
False	False	True	80	True

		Weight	Heart Disease
60	{	50	False
		70	True
84	7	80	False
		88	True
91.5		90	True
			••••

Original Dataset

False

N/A

True

88

50

80

False

True

True

True

True

False

True

False

False

Bootstrapped Dataset

False

False

True

88

88

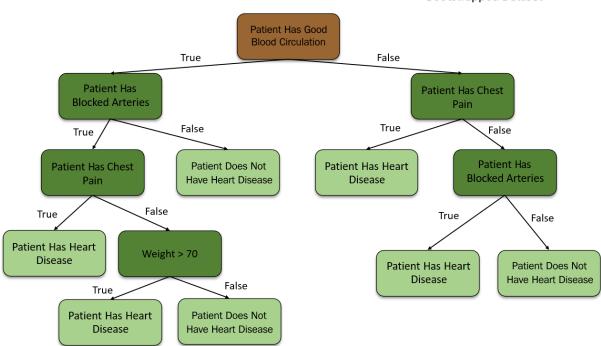
70

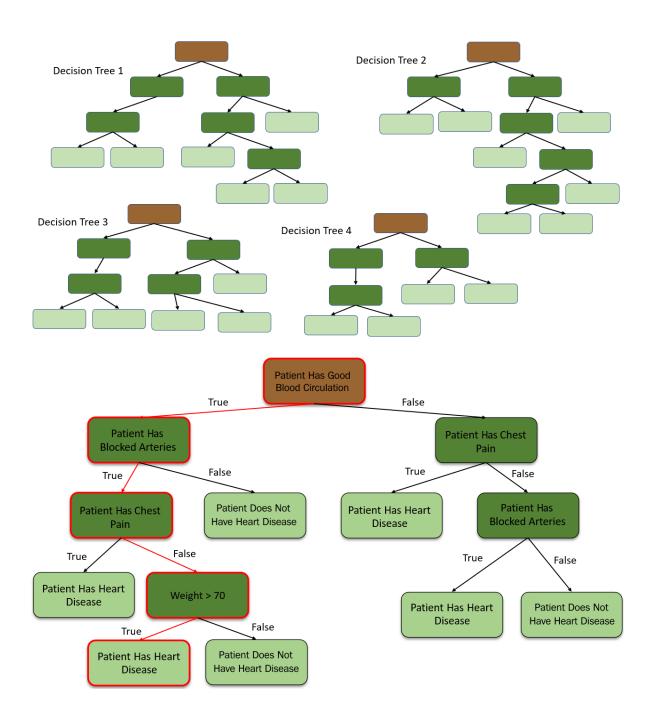
False

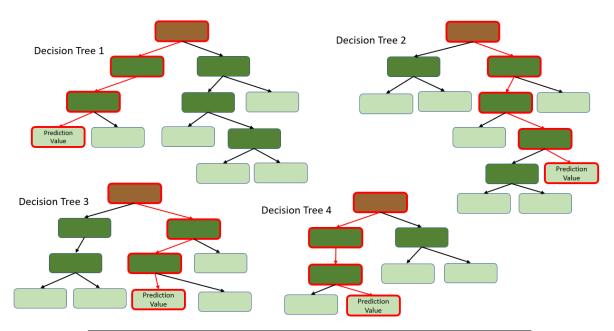
False

True

True

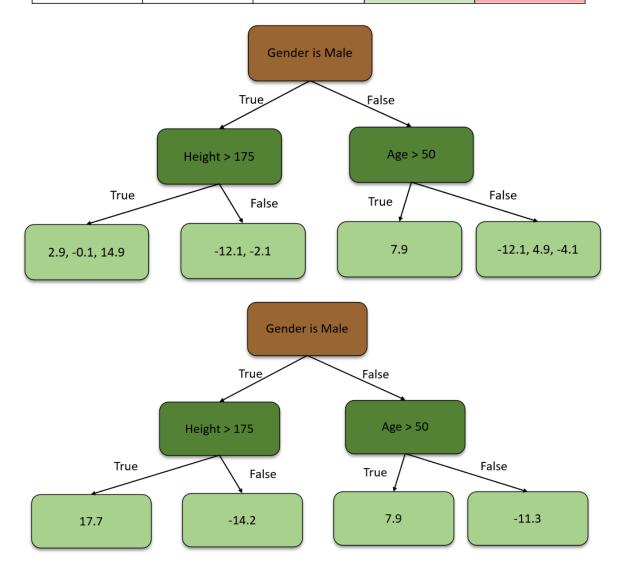

True

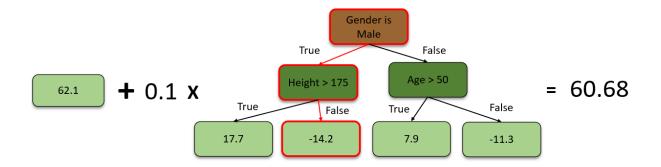

True

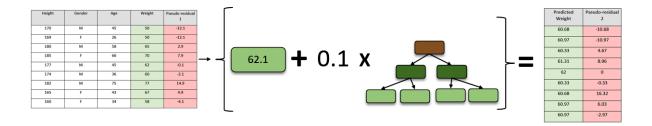

True

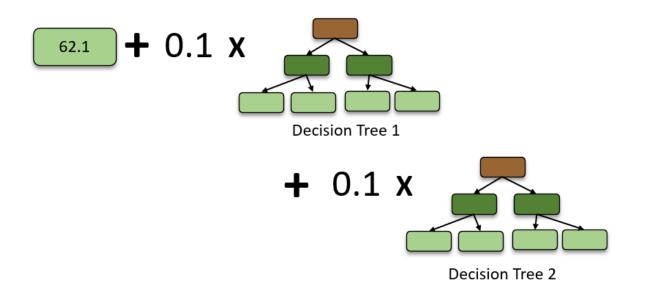
True

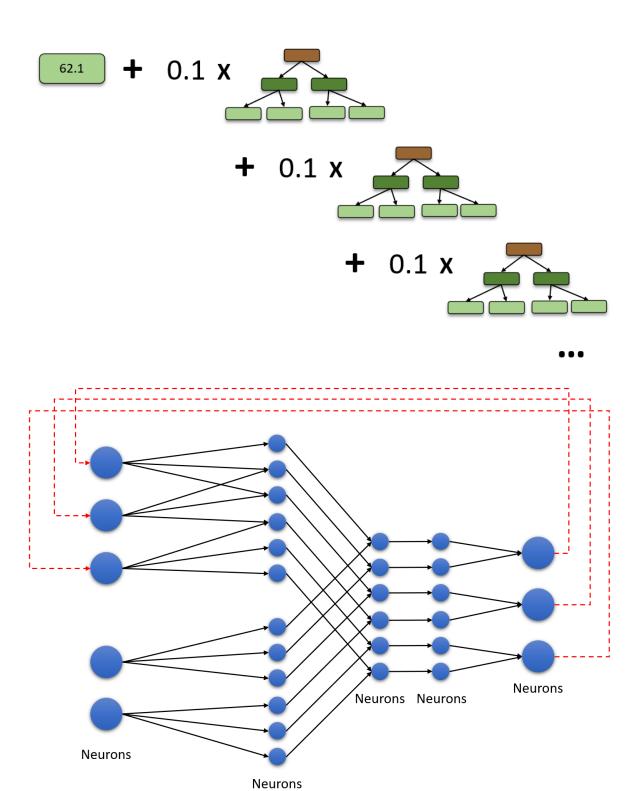
True

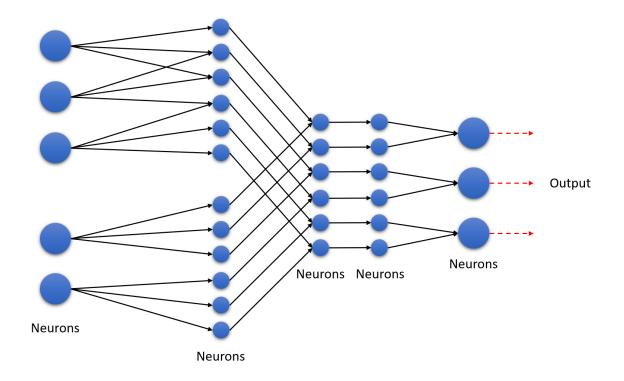

Height	Gender	Age	Weight
170	М	45	50
169	F	26	67
180	М	58	55
185	F	66	45
177	М	45	86
174	М	36	90
182	М	75	77
165	F	43	56
160	F	34	66

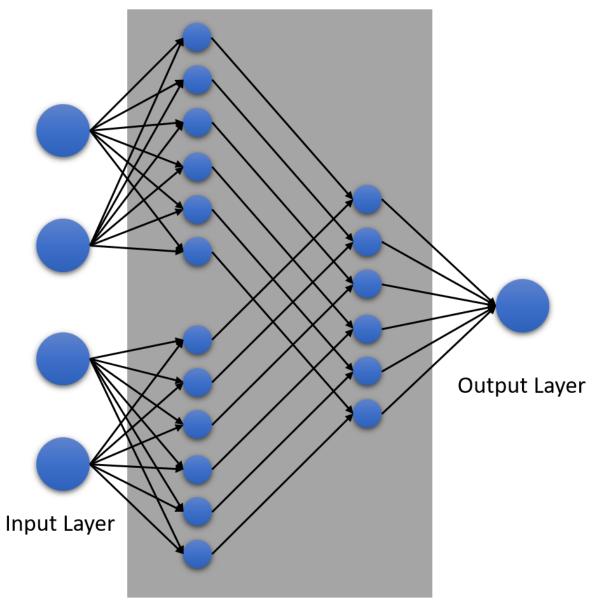

Height	Gender	Age	Weight
170	М	45	50
169	F	26	50
180	М	58	65
185	F	66	70
177	М	45	62
174	М	36	60
182	М	75	77
165	F	43	67
160	F	34	58

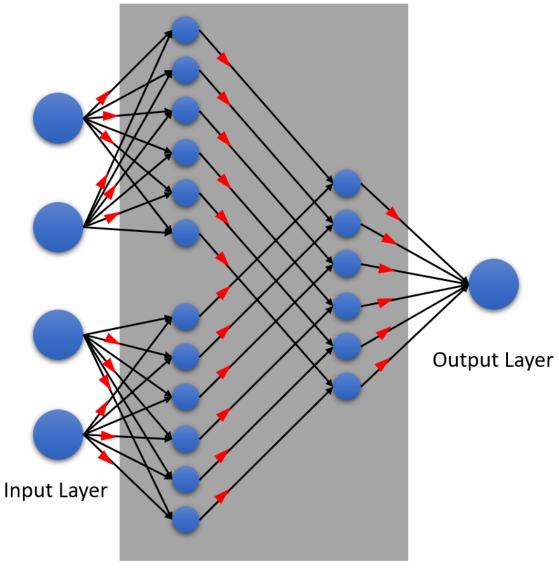

62.1

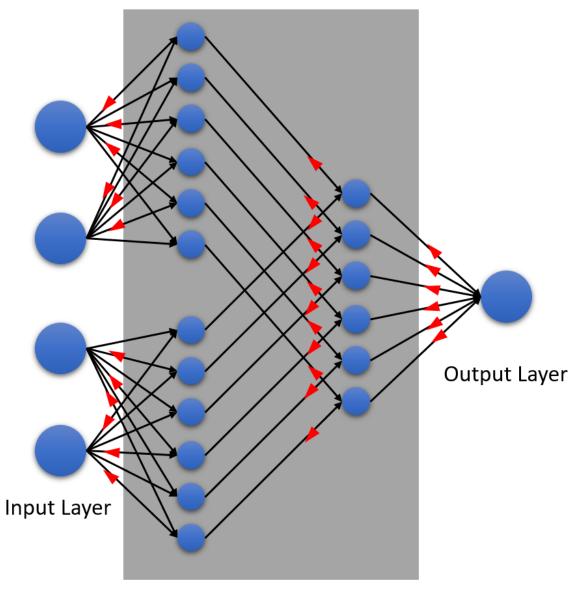

Average Value of the Weight Column


Height	Gender	Age	Weight	Pseudo-residual
				1
170	М	45	50	-12.1
169	F	26	50	-12.1
180	М	58	65	2.9
185	F	66	70	7.9
177	М	45	62	-0.1
174	М	36	60	-2.1
182	М	75	77	14.9
165	F	43	67	4.9
160	F	34	58	-4.1

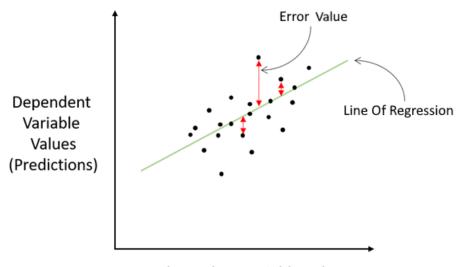








Hidden Layer

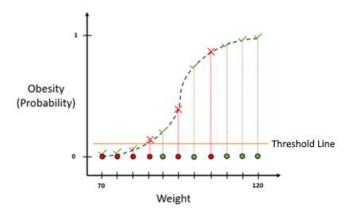


Hidden Layer

Hidden Layer

Chapter 6: Understanding H2O AutoML Leaderboard and Other Performance Metrics

Independent Variable Values

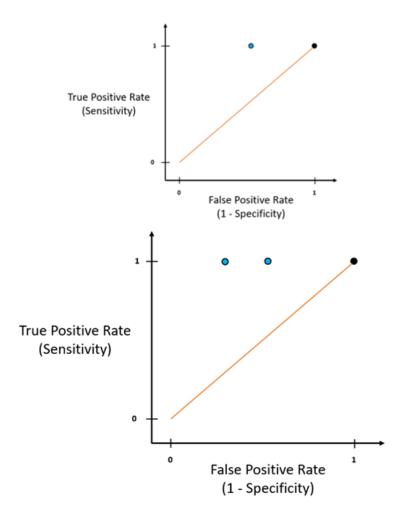

Actual Values

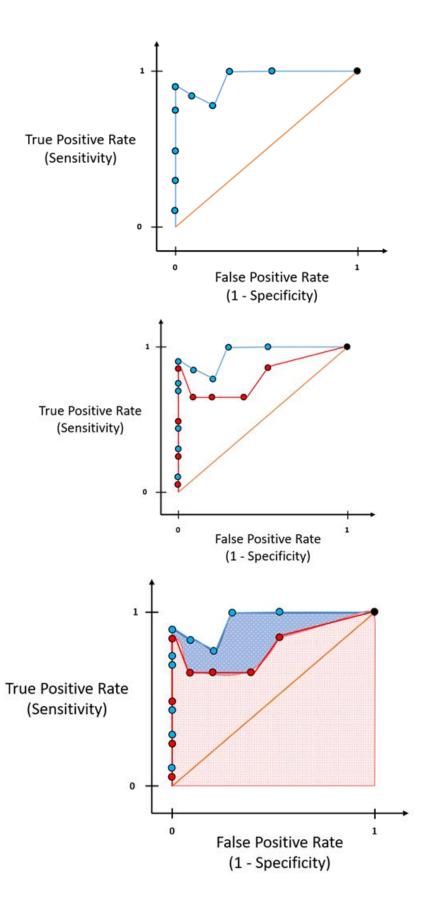
		Patient Has Heart Disease	Patient Does Not Have Heart Disease
Predicted	Patient Has Heart Disease	True Positive	False Positive
Values	Patient Does Not Have Heart Disease	False Negative	True Negative

Actual Values

	Class A	Class B	Class C	Class D	Class E	Class F
Class A	Correct Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction
Class B	Incorrect Prediction	Correct Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction
Class C	Incorrect Prediction	Incorrect Prediction	Correct Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction
Class D	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Correct Prediction	Incorrect Prediction	Incorrect Prediction
Class E	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Correct Prediction	Incorrect Prediction
Class F	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Incorrect Prediction	Correct Prediction

Weight (kgs)	Obese		
70	0		
75	0		
80	0		
85	0		
90	1		
95	0]	
100	1	Obesity	
105	0		
110	1		
115	1		
120	1	70 120 Weight	
Obesity (Probability) Obesity (Probability) Weight			
Obesity (Probability) Threshold Line Weight			

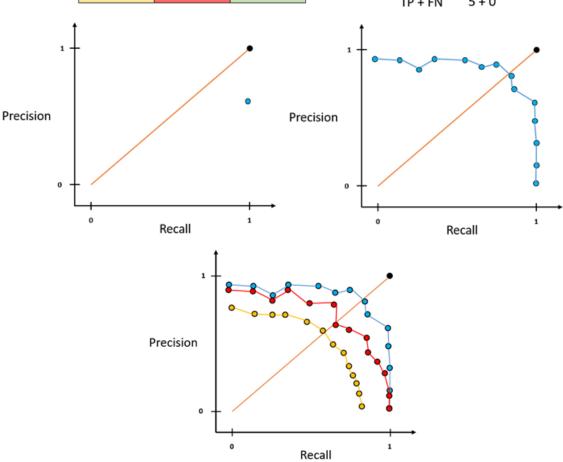



Actual Values

	Patient is Obese	Patient is not Obese
Patient is Obese	5	3
Patient is not Obese	0	3

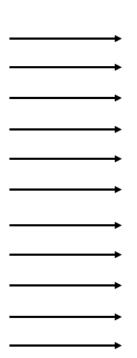
Sensitivity =
$$\frac{TP}{TP + FN} = \frac{5}{5 + 0} = 1$$

1 - Specificity = 1 -
$$\frac{TN}{TN + FP}$$
 = 1 - $\frac{3}{3+3}$ = 0.5

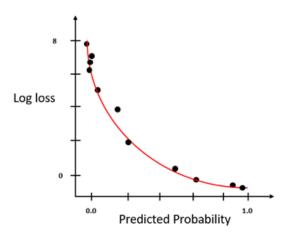


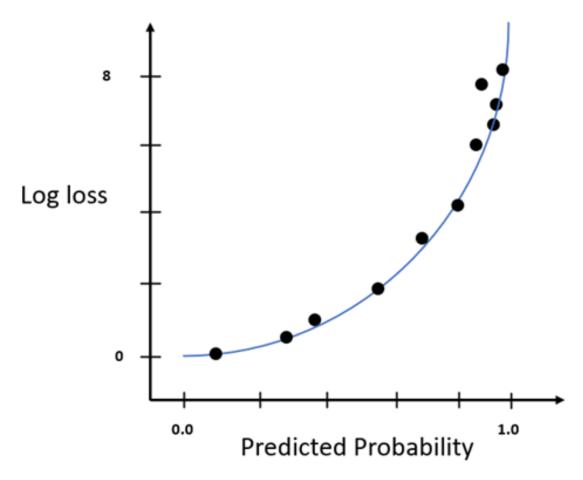
Actual Values

		Patient is Obese	Patient is not Obese
Predicted Patient is Obes		5	3
Values	Patient is not Obese	0	3


Precision =
$$\frac{TP}{TP + FP} = \frac{5}{5+3} = 0.625$$

Recall =
$$\frac{TP}{TP + FN} = \frac{5}{5 + 0} = 1$$




Weight (kgs)	Obese	Prediction
		Probability
70	0	0.29
75	0	0.35
80	0	0.40
85	0	0.52
90	1	0.54
95	0	0.60
100	1	0.62
105	0	0.69
110	1	0.75
115	1	0.007
120	1	0.0002

Weight (kgs)	Obese	Prediction
		Probability
70	0	0.29
75	0	0.35
80	0	0.40
85	0	0.52
90	1	0.54
95	0	0.60
100	1	0.62
105	0	0.69
110	1	0.75
115	1	0.007
120	1	0.0002

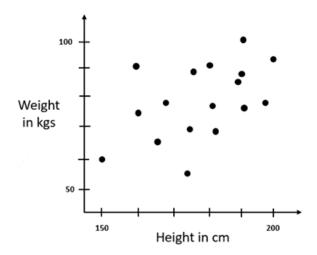
Log loss
0.14
0.18
0.22
0.31
0.26
0.39
0.20
0.50
0.12
2.15
3.69

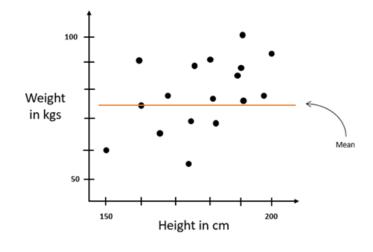
Actual Values

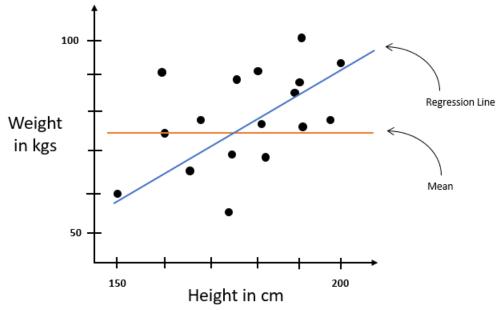
	Patient is Obese	Patient is not Obese
Patient is Obese	75	750
Patient is not Obese	30	6

Precision =
$$\frac{TP}{TP + FP} = \frac{75}{75 + 750} = 0.09$$

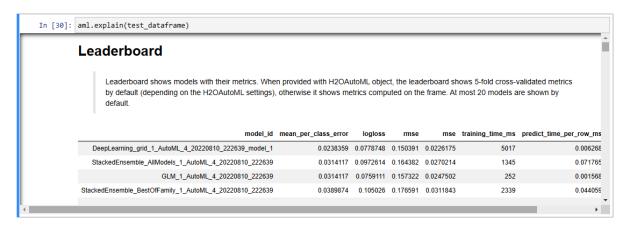
Recall =
$$\frac{TP}{TP + FN} = \frac{75}{75 + 30} = 0.71$$

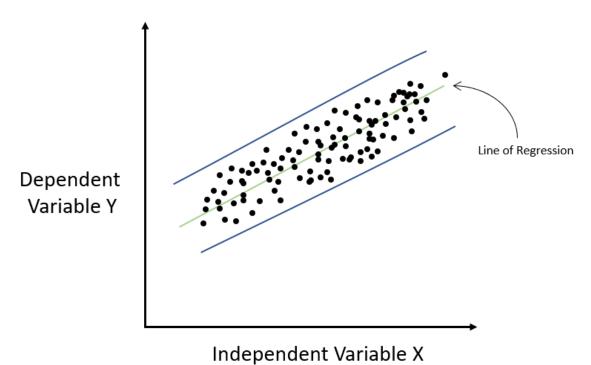

Actual Values

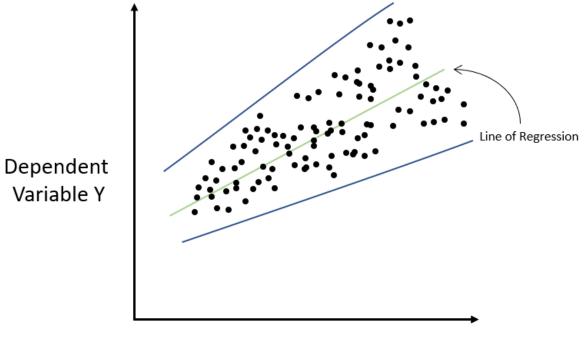

Predicted Values

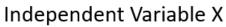

	Fruit is grape	Fruit is not a grape			
Fruit is grape	163	17			
Fruit is not a grape	12	8			

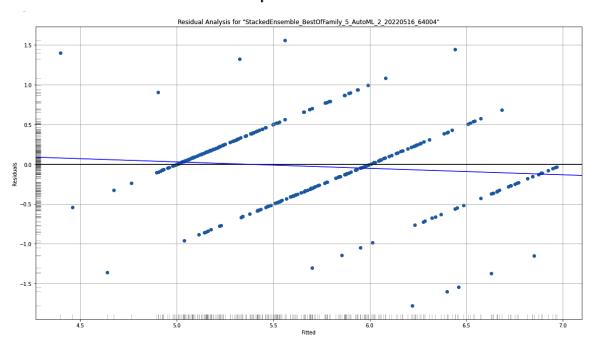
Actual Values

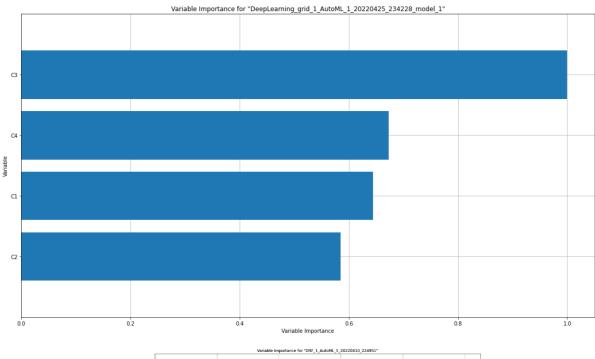

	Fruit is watermelon	Fruit is not a watermelon
Fruit is watermelon	8	12
Fruit is not a watermelon	17	163

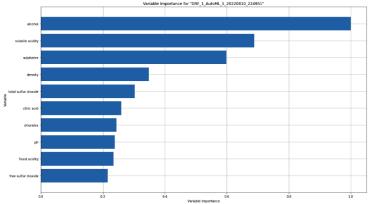


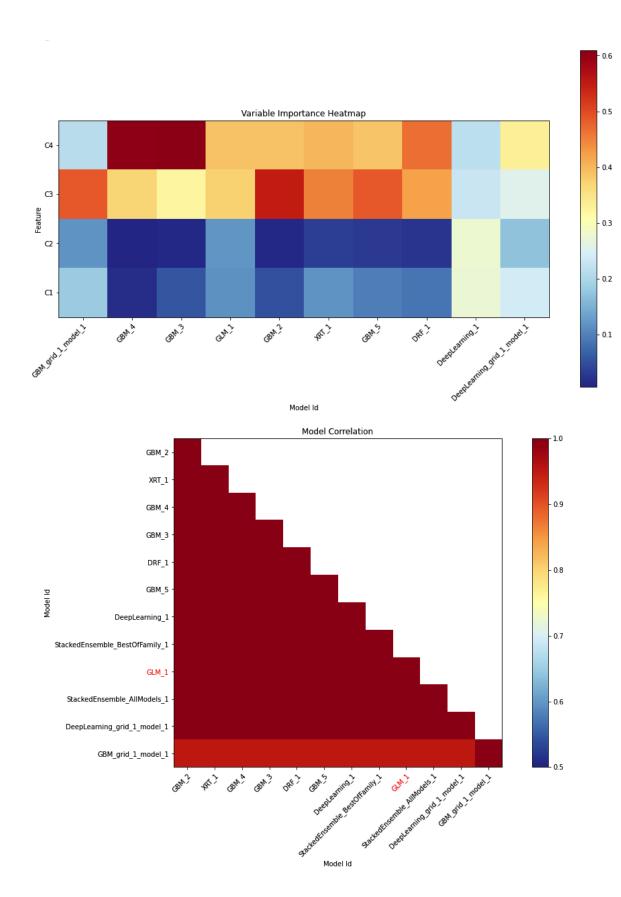


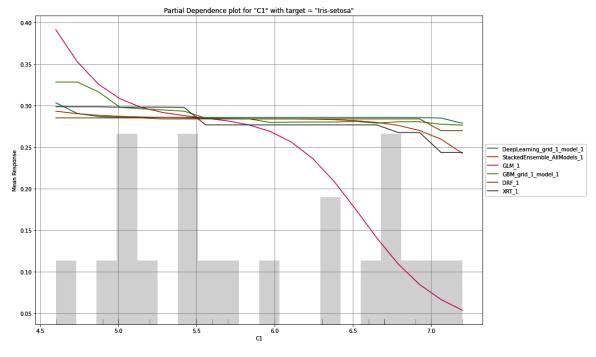


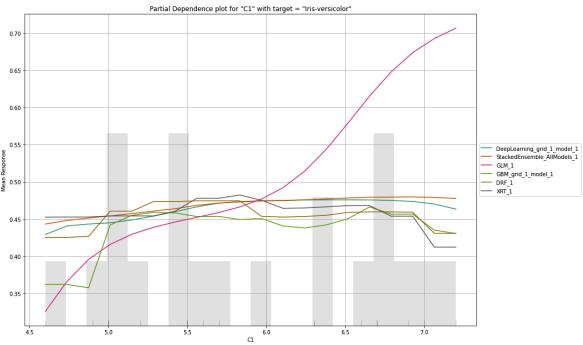

Chapter 7: Working with Model Explainability

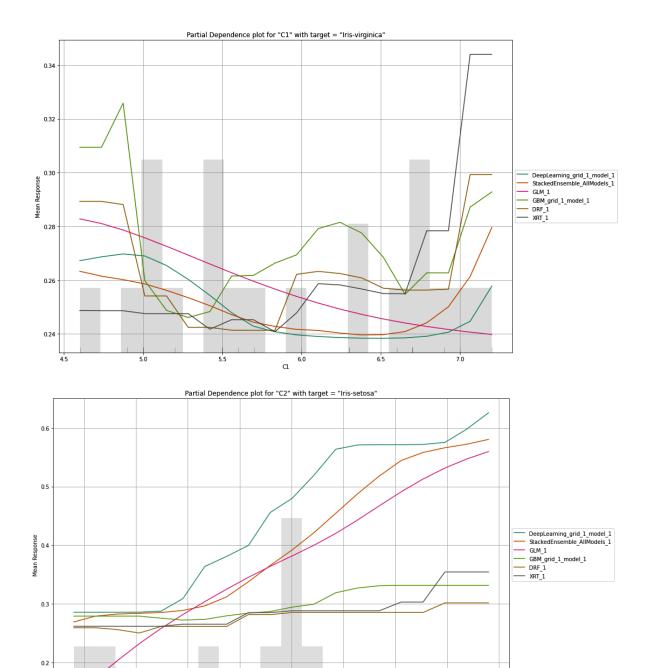










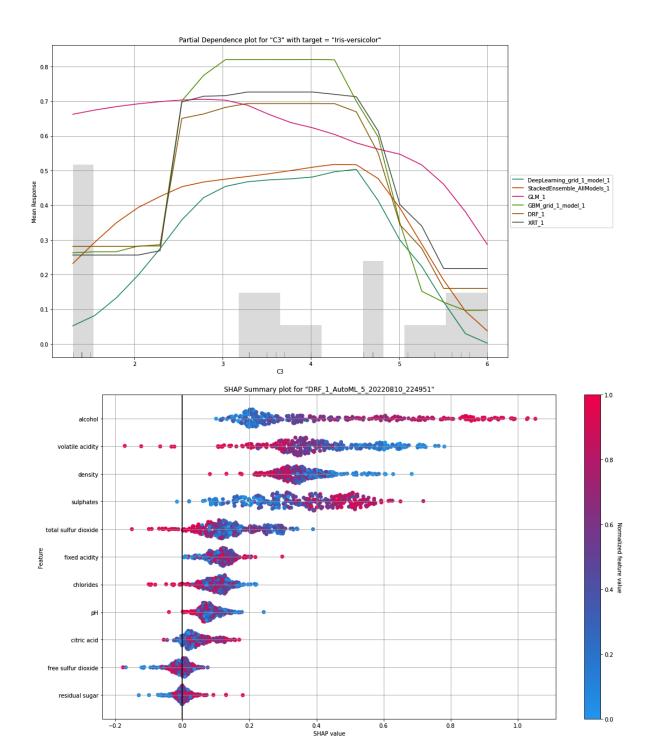


3.25 C2

3.50

3.75

4.00

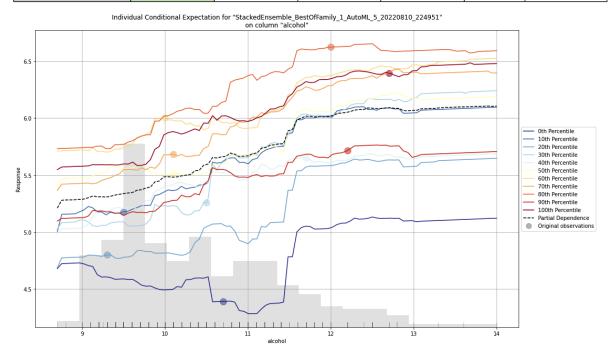

4.25

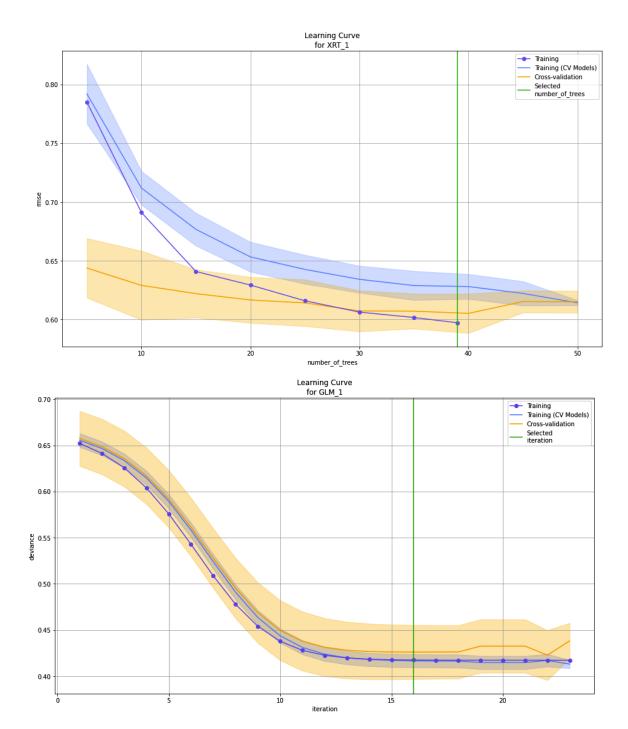
3.00

2.25

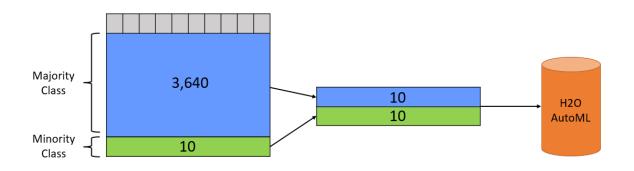
2.50

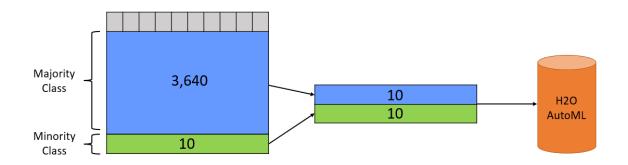
2.75



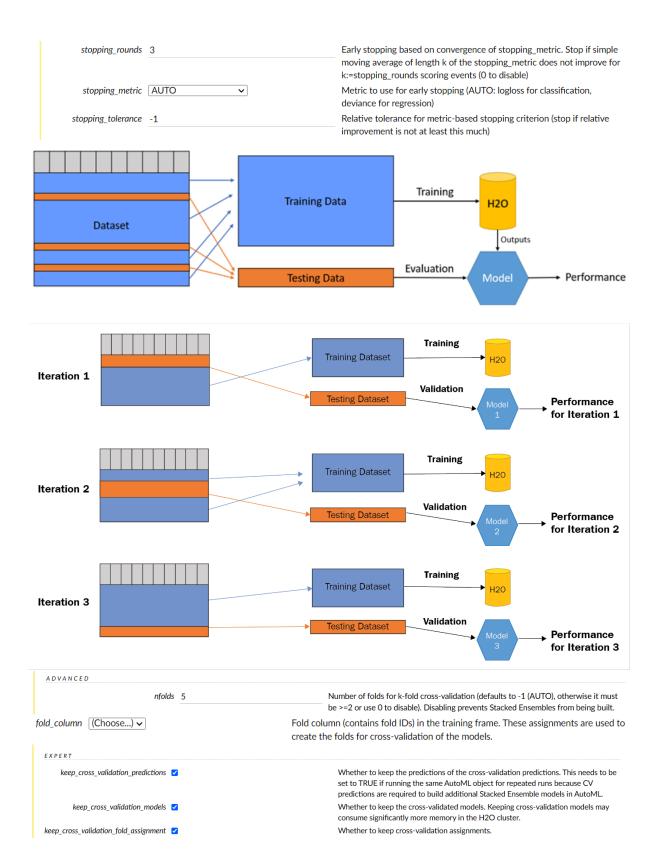

	Feature 1	Feature 2	Feature 3	Feature 4	 Target
Observation 1	5	57	8	4	 1
Observation 2	2	11	47	67	 1
Observation 3	6	43	84	8	 0
Observation 4	7	3	46	457	 1
Observation N	3	5	27	37	 1

	Feature 1	Feature 2	Feature 3	Feature 4	 Target
Observation 1	5	57	8	4	 1
Observation 1	2	57	8	4	 0.34
Observation 1	6	57	8	4	 0.72
Observation 1	7	57	8	4	 0.21
Observation 1	3	57	8	4	 0.71


	Feature 1	Feature 2	Feature 3	Feature 4	 Target
Observation 1	5	57	8	4	 1
Observation 2	2	11	47	67	 1
Observation 3	6	43	84	8	 0
Observation 4	7	3	46	457	 1
Observation N	3	5	27	37	 1


	Feature 1	Feature 2	Feature 3	Feature 4	 Target
Observation 2	5	11	47	67	 0.34
Observation 2	2	11	47	67	 1
Observation 2	6	11	47	67	 0.77
Observation 2	7	11	47	67	 0.84
Observation 2	3	11	47	67	 0.75

Chapter 8: Exploring Optional Parameters for H2O AutoML



balance_classes 🗸

Balance training data class counts via over/under-sampling (for imbalanced data).

Chapter 9: Exploring Miscellaneous Features in H2O AutoML

 $\begin{bmatrix} 1 & 2 & 2 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 1 & 1 & 0 & 0 \\ 2 & 0 & 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$

Parse progress: | (done) 100%
Parse progress: | (done) 100%
AutoML progress: | (22:50:58.301: AutoML: XGBoost is not available; skipping it.

22:50:59.943: _min_rows param, The dataset size is too small to split for min_rows=100.0: must have at least 200.0 (weighted) rows, but have only 105.0.

| (done) 100%

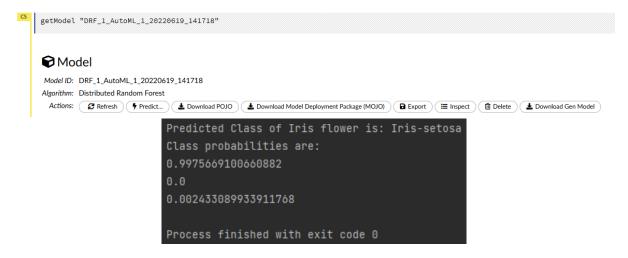
Out[17]: ,

+ H2OAutoMLClassifier
H2OAutoMLClassifier(max_models=10, seed=5, sort_metric='logloss')

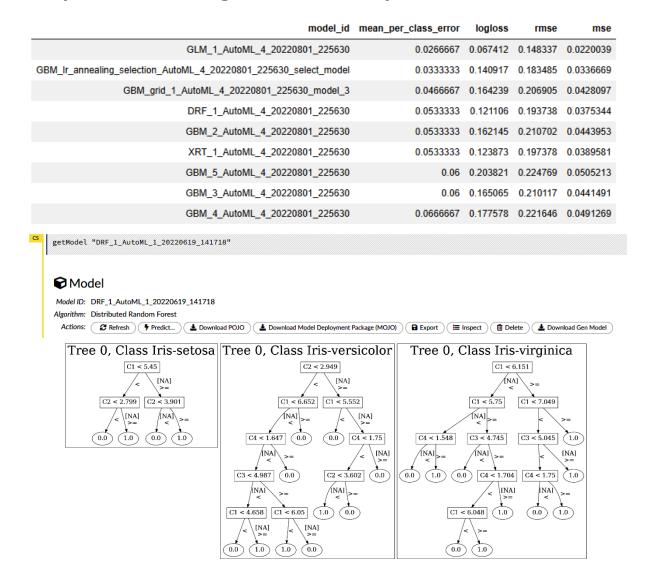
model_id	logioss	mean_per_class_error	rmse	mse
GLM_1_AutoML_2_20220613_224223	0.0860788	0.0479303	0.162001	0.0262443
DeepLearning_grid_1_AutoML_2_20220613_224223_model_1	0.112033	0.038671	0.170577	0.0290966
StackedEnsemble_AllModels_1_AutoML_2_20220613_224223	0.11419	0.0378462	0.176666	0.0312109
StackedEnsemble_BestOfFamily_1_AutoML_2_20220613_224223	0.120517	0.0476502	0.18068	0.0326452
XRT_1_AutoML_2_20220613_224223	0.124044	0.0473856	0.190803	0.0364056
GBM_2_AutoML_2_20220613_224223	0.132214	0.0473856	0.200067	0.040027
DRF_1_AutoML_2_20220613_224223	0.133123	0.0473856	0.189798	0.0360231
GBM_3_AutoML_2_20220613_224223	0.147124	0.0473856	0.202676	0.0410774
GBM_4_AutoML_2_20220613_224223	0.155193	0.0473856	0.20303	0.041221
GBM_5_AutoML_2_20220613_224223	0.184402	0.0473856	0.210164	0.0441689

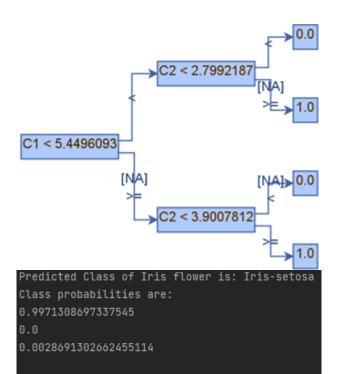
Parse progress: | (done) 100%

AutoML progress:

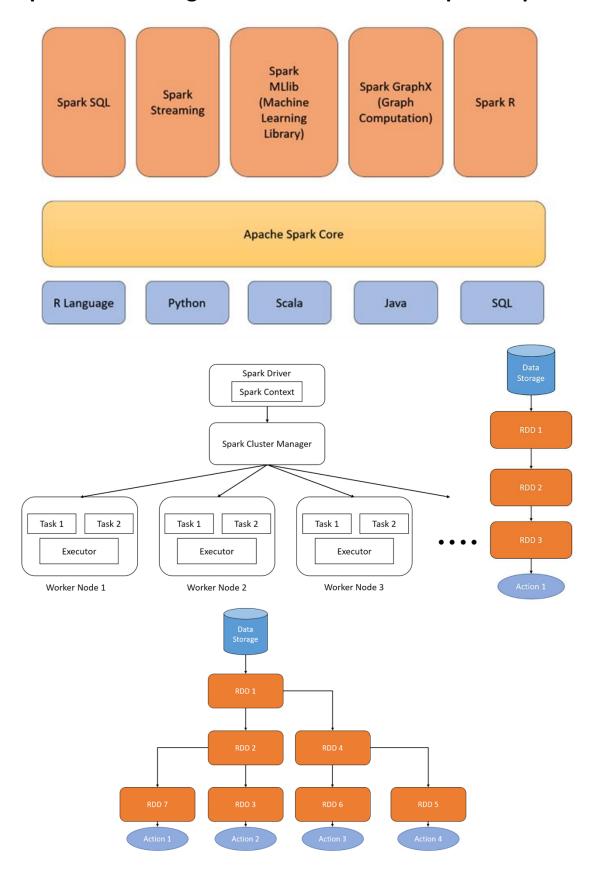

23:41:40.934: AutoML: XGBoost is not available; skipping it.

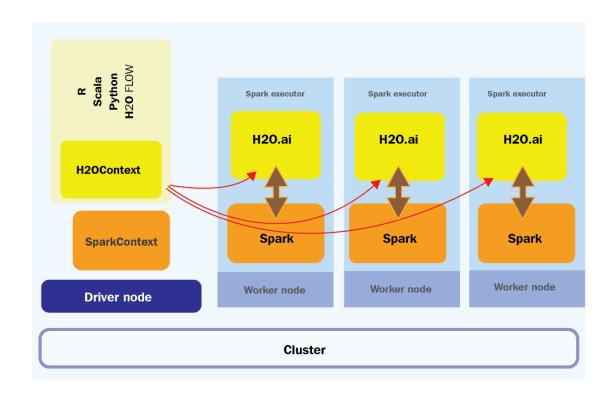
H2OAutoMLRegressor

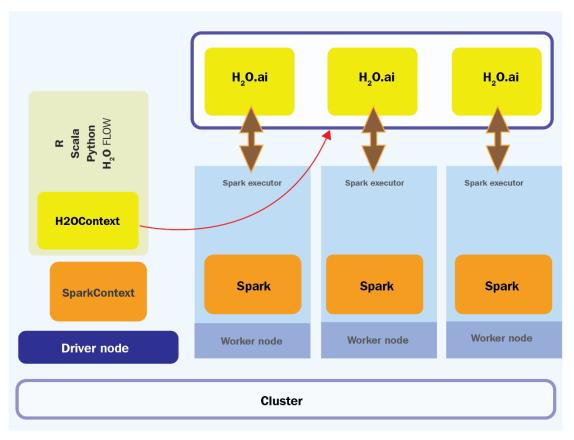

H2OAutoMLRegressor(max_models=10, max_runtime_secs_per_model=30, seed=5)

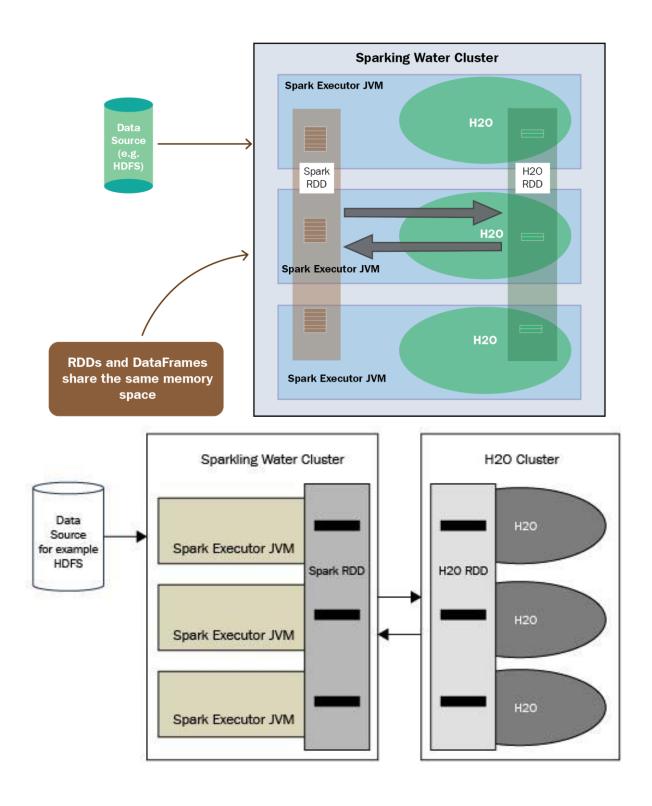

```
Parse progress:
                                                                                            (done) 100%
stackedensemble prediction progress:
                                                                                            (done) 100%
[5.7050527 4.71579041 4.99625922 6.88799804 5.30901742 5.08507949
 5.22402198 6.80312639 5.73784549 5.05679221 6.60598185 5.16579878
 5.14112093 5.8436239 6.03287821 5.95839962 6.33995783 6.05639611
 5.76648316 5.75068268 4.90408778 5.29082171 5.17198907 5.217705
 5.97337232 5.43873863 5.19827529 5.31316769 6.2793359 6.38171303
 5.58378112 5.36376057 5.42070109 4.84603301 5.9211492 6.17345933
 6.09528051 5.68300139 5.10375214 5.33199332 6.11587125 5.05826719
 5.52626887 5.12766708 6.54879736 5.67341307 5.24367939 5.7050527
 5.72492442 5.20803101 5.72238569 5.23847352 4.94162759 5.72515368
 5.99710415 5.54065627 5.96809731 5.41532481 6.51548553 6.43069508
 5.41738151 5.50117357 6.77200607 5.60270773 5.02891041 6.637265
 6.61085364 5.51616503 5.77759467 5.88147359 5.12760658 6.87250045
 5.61076927 5.45198623 5.4550793 5.02793331 4.86960596 5.24755881
 5.14942367 5.03725484 5.36312455 4.98812026 5.49151424 5.16758049
 5.04899969 5.48321742 5.63502592 5.01813754 5.63146962 5.06783828
 6.08415337 6.10573536 5.89912238 5.51682489 5.8902318 5.61761149
 5.83461759 5.45310272 5.81230101 6.56012283 5.68300139 5.72515368
 5.42014689 6.37008337 5.44917672 5.65400694 5.37099615 5.05670911
 5.50945522 4.7857324 6.07391301 5.6309158 5.38736267 5.94324949
 6.12127789 5.25270546 5.09663222 4.94148322 5.24268557 5.76740135
 5.02992971 4.98601981 5.23574556 6.31680286 4.96510575 5.52742118
 5.05826719 5.69985666 5.16785547 6.83281514 4.81951631 4.98821234
 timestamp level
                                                                                         message name value
 00:13:05.18 INFO Workflow
                                                                         Project: AutoML 2 20220615 01305
 00:13:05.19 INFO Validation
                                                                          5-fold cross-validation will be used.
 00:13:05.19 INFO Validation
                                                      Setting stopping tolerance adaptively based on the training frame: 0.05
 00:13:05.19 INFO Validation
 00:13:05.19 INFO DataImport training frame: Frame key: AutoML_2_20220615_01305_training_iris_data1.hex cols: 5 rows: 150 chunks: 1 size: 1982 checksum: -5547756281708519194
 00:13:05.19 INFO DataImport
                                                                                 validation frame: NULL
 00:13:05.19 INFO DataImport
                                                                                leaderboard frame: NULL
 00:13:05.19 INFO DataImport
                                                                                  blending frame: NULL
 00:13:05.19 INFO DataImport
                                                                                  response column: C5
 00:13:05.19 INFO DataImport
                                                                                     fold column: null
              {'creation_epoch': '1655248385',
                'start_epoch': '1655248385',
               'start_GLM_def_1': '1655248385',
               'start_GBM_def_5': '1655248386',
               'start_DRF_def_1': '1655248386',
               'start_GBM_def_2': '1655248386',
               'start_GBM_def_3': '1655248386',
               'start GBM def 4': '1655248386',
               'start DRF XRT': '1655248386',
               'start_GBM_def_1': '1655248387',
               'start_DeepLearning_def_1': '1655248387',
               'start_GBM_grid_1': '1655248387',
               'start_DeepLearning_grid_1': '1655248387',
               'start_StackedEnsemble_best_of_family_xglm': '1655248395',
               'start_StackedEnsemble_all_xglm': '1655248396',
                'stop_epoch': '1655248397',
               'duration_secs': '12'}
```

Chapter 10: Working with Plain Old Java Objects (POJOs)


Chapter 11: Working with Model Object






Process finished with exit code 0

Chapter 12: Working with H2O AutoML and Apache Spark

Cement	Blast	Fly	Water	Superplasticizer	Coarse	Fine	Age	Concrete
	Furnace	Ash			Aggregate	Aggregate		compressive
	Slag							strength
540.0	0.0	0.0	162.0	2.0 2.5 1040.0 676.0		676.0	28	79.99
540.0	0.0	0.0	0.0 162.0 2.5 1055.0 676.0		676.0	28	61.89	
332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89

```
.2$ ./bin/sparkling-shell
Ising Spark defined in the SPARK_HOME=/home/salil/softwares/spark-3.2.1-bin-hadoop3.2 environmental property
  Spark master (MASTER) : local[*]
Spark home (SPARK_HOME) : /home/sall//softwares/spark-3.2.1-bin-hadoop3.2
H2O build version : 3.36.1.2 (zumbo)
Sparkling Water version : 3.36.1.2-1-3.2
Spark build version : 3.2.1
Scala version : 2.12
22/07/07 23:13:52 MARN Utils: Your hostname, salil-VirtualBox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
22/07/07 23:13:52 MARN Utils: Set SPARK_LOCAL_IP lf you need to bind to another address
VARNING: An illegal reflective access operation has occurred
VARNING: Higaal reflective access by org.apache.spark.unsafe.Platform (file:/home/salil/softwares/spark-3.2.1-bin-hadoop3.2/jars/spark-unsafe_2.12-3.2.1.jar) to constructor ja
VARNING: Disease consider reporting this to the maintainers of org.apache.spark.unsafe.Platform
VARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations will be denied in a future release
VARNING: All Illegal access operations will be denied in a future release
V2/07/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
V3/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
V3/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
V3/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
V3/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
V3/07 23:13:54 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
V3/07 23:13:55 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
V3/07 23:13:55 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
V3/07 23:13:56 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
V3/07 23:13:56 MARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
V3/07 23:13:56 MARN NativeCodeLoader: Unable to load native-hadoop library for y
Jsing Scala version 2.12.15 (OpenJOK 64-Bit Server VM, Java 11.0.15)
Type in expressions to have them evaluated.
Type :help for more information.
                                                                                                                                                                                                      1 /5 bin/pysparkling
                          sing Spark defined in the SPARK_HDME=/home/salil/softwares/spark-1,2,1-bin-hadoop3.2 environmental property
                           thing again Certains, Agr. 2 2012, 09:04:190 (CCC 11.2.0) on linux

pp: "help," "copyright," "credits" or "license" for more information.

1/97/12 01:02:09 WMND Utils: Your hostmane, sall-virtualizes resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface engoss)

1/97/20 01:02:09 WMND Utils: Set SPARK_LOCAL_TP if you need to bind to another address

MRING: An illegal reflective access operation has occurred

MRING: Illegal reflective access operation has occurred

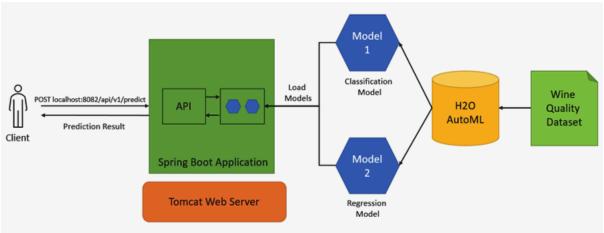
MRING: Please consider reporting this to the naintainers of org.apache.spark.unsafe.Platform

MRING: De-"cliegal-eccesswarm to enable warrings of further illegal reflective access operations will be denied in a future release

1/97/12 01:02:00 WMN Native-docioader: jumble to load native-hadoop library for your platform... using builtin-java classes where applicable

sing Spark's default logic profile: org/apache/spark/logif-defaults.properties

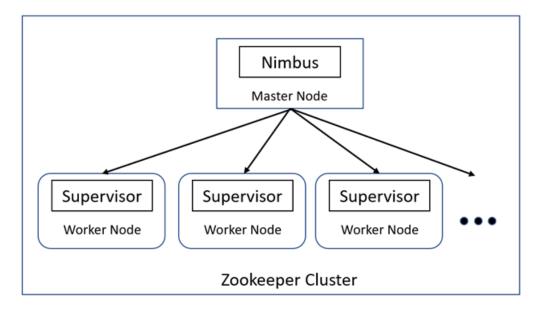
1 additional logical profile: org/apache/spark/logif-defaults.properties

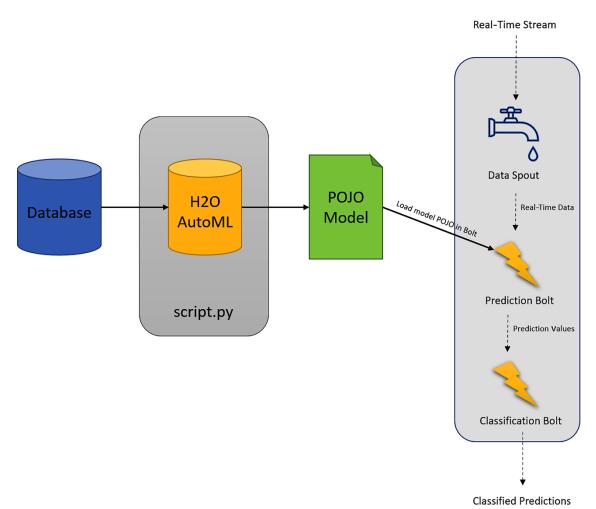

1 cone to
                               ng Python version 3.18.4 (main, Apr. 2 2022 09:04:19)
rk contest Neb UI available at http://10.6.2.15:0000
rk contest available as 'sc' (master = local[*], app id = local-1657584129365),
rkSession available as 'spark'.
                                                 oContext: ai.h2o.sparkling.H2OContext =
                                     Sparkling Water Context:
                                            * Sparkling Water Version: 3.36.1.2-1-3.2
                                          * H2O name: sparkling-water-salil_local-1657232049726
                                          * cluster size: 1
* list of used nodes:
                                               (executorId, host, port)
                                                 (0,10.0.2.15,54321)
                                               Open H2O Flow in browser: http://10.0.2.15:54323 (CMD + click in Mac OSX)
```

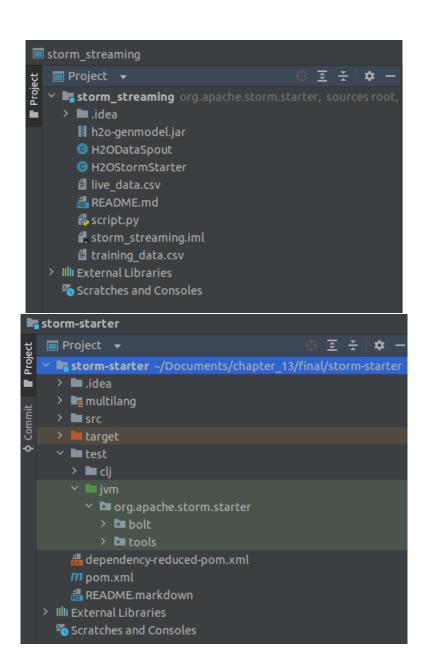
+	.+	+	+	+	+	++
į.	model_id	rmse	mse	mae	rmsle	mean_residual_deviance
10					0.1460912336455651	
1	StackedEnsemble_BestOfFamily_1_AutoML_2_20220709_155143	4.384260179975179	19.221737325715992	2.9686839361381865	0.14812221198292888	19.221737325715992
2	GBM_4_AutoML_2_20220709_155143	4.573584379622189	20.917674077524083	3.1189841752490692	0.14510419291520354	20.917674077524083
3	XGBoost 3 AutoML 2 20220709 155143	4.594722541302787	21.11147523155594	3.14733816048264	0.1695988536803904	21.11147523155594
14	GBM 3 AutoML 2 20220709 155143	4.602836781243628	21.186106434769197	3.216627946091281	0.14846442209051083	21.186106434769197
5	XGBoost_2_AutoML_2_20220709_155143	4.795345366837029	22.995337187245365	3.2627855644950383	0.163751109572822	22.995337187245365
6	GBM_2_AutoML_2_20220709_155143	4.805228403927745	23.09022001391398	3.357554479064718	0.15569704766858766	23.09022001391398
7	XGBoost_1_AutoML_2_20220709_155143	4.883657455766908	23.850110145267706	3.4043382679527485	0.16722619939781377	23.850110145267706
8	XRT_1_AutoML_2_20220709_155143	5.925199691510438	35.107991384275394	4.320396072254607	0.2074160378479092	35.107991384275394
9	DRF_1_AutoML_2_20220709_155143	5.946360562106173	35.35920393457163	4.299032302631552	0.2060104350171061	35.35920393457163
10	GBM_1_AutoML_2_20220709_155143	6.787876516135789	46.07526759830773	5.291743594342693	0.22030051984937776	46.07526759830773
111	GLM_1_AutoML_2_20220709_155143	10.520585472187229	110.68271867759698	8.317403167170115	0.3410797993409181	110.68271867759698
+			+	+	+	++

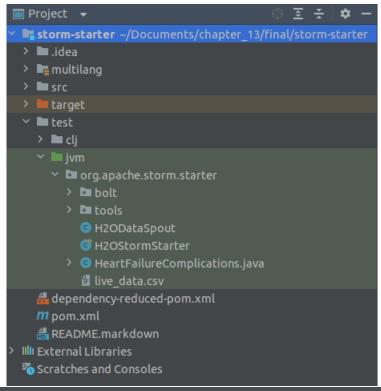
+	+			+		+	++	
Cement Blast Furnace Sl	ag Fly Ash (component	3)(kg in a m^3 mixtu	ure) Water Superpla	sticizer Coarse Aggreg	ate Fine Aggr	egate Age Concrete compre	ssive strength detailed_predict
ion prediction								
+								
102.0 153.0 47} 18.70264707680947	0.0			192.0 0.0	887.0	942.0	28.0 17.28	{18.702647076809
108.3 162.4	[0.0			203.5 0.0	938.2	849.0	28.0 20.59	{21.148178536290
2} 21.1481785362902 116.0 173.0	[0.0			192.0 0.0	1909.8	891.9	7.0 10.09	{10.275402528409
455} 10.275402528409455								
122.6 183.9 123} 3.3479052271691123	[0.0			203.5 0.0	958.2	800.1	3.0 3.32	{3.3479052271691
122.6 183.9 1} 9.94622375783771	0.0			203.5 0.0	958.2	800.1	7.0 10.35	{9.9462237578377
133.0 200.0	0.0			192.0 0.0	927.4	839.2	3.0 6.88	{7.9060281149653
555} 7.9060281149653555 133.1 210.2	[0.0			195.7 3.1	949.4	795.3	28.0 28.94	{29.909670454107
82} 29.90967045410782 136.0 162.0	126.0			172.0 10.0	923.0	764.0	28.0 29.07	{30.297083753127
474} 30.297083753127474								
136.0 196.0 884} 33.626668830798884	98.0			199.0 6.0	847.0	783.0	28.0 26.97	{33.626668830798
139.6 209.4 134} 11.280078862592134	[0.0			192.0 0.0	1047.0	806.9	7.0 14.59	{11.280078862592
139.6 209.4	[0.0			192.0 0.0	1047.0	806.9	28.0 28.24	{26.423179241134
303} 26.423179241134303 139.6 209.4	[0.0			192.0 0.0	1047.0	806.9	90.0 39.36	[{38.775039769988
16} 38.77503976998816 139.7 163.9	127.7			236.7 5.8	868.6	655.6	28.0 35.23	{33.813219065518
79} 33.81321906551879								
140.0 133.0 11} 33.07550736616611	103.0			200.0 7.0	916.0	753.0	28.0 36.44	{33.075507366166
141.9 166.6 75} 34.03498803810175	129.7			173.5 10.9	882.6	785.3	28.0 44.61	{34.034988038101
142.0 167.0	130.0			174.0 11.0	883.0	785.0	28.0 44.61	{34.091406666564
69} 34.09140666656469 144.0 136.0	106.0			178.0 7.0	941.0	774.0	28.0 26.14	{27.963026614734
147} 27.963026614734147 145.0 0.0				181.0 11.0	979.0	812.0	28.0 13.2	{14.164433423972
408} 14.164433423972408								
145.0 116.0 } 27.405954825524	119.0			184.0 5.7	833.0	880.0	28.0 29.16	{27.405954825524
145.4 0.0 017 10.957437233230017	178.9			201.7 7.8	824.0	868.7	28.0 10.54	{10.957437233230
++								
only showing top 20 rows								
+	+							
Cement Blast Furnace	Slag Fly Asi	h Water S -++-	Superplasticizer Coa	rse Aggregate Fine	· Aggregate Age Conc	rete compres	sive strength detailed_p	prediction prediction
		0 192.0	0.0	887.0	942.0 28.0			780893517} 19.20426780893517
		0 203.5 0 192.0	0.0 0.0	938.2 909.8	849.0 28.0 891.9 7.0			293412489} 21.78240293412489 576417453} 9.418119576417453
122.6	83.9 0.0	0 203.5	0.0	958.2	800.1 3.0		3.32 {4.7888494	427699202} 4.788849427699202
		0 203.5	0.0	958.2	800.1 7.0			897256051} 10.959896897256051
		0 192.0	0.0	927.4	839.2 3.0			331426289} 8.052752331426289
		0 195.7	3.1 10.0	949.4 923.0	795.3 28.0			295883003} 30.209503295883003 884928773} 31.24308884928773
		0 172.0 0 199.0	6.0	847.0	764.0 28.0 783.0 28.0		26.97 {31.243088	337130581} 34.16633337130581
		0 193.0	0.0	1047.0	806.9 7.0			740930616}
		0 192.0	0.0	1047.0	806.9 28.0			465958444} 27.173735465958444
		0 192.0	0.0	1047.0	806.9 90.0			779377876} 39.92498779377876
139.7		7 236.7	5.8	868.6	655.6 28.0		35.23 {33.706335	527711549} 33.70633527711549
		0 200.0	7.0	916.0	753.0 28.0			244797436} 32.804805244797436
		7 173.5	10.9	882.6	785.3 28.0			436008333} 32.74609436008333
		0 174.0	11.0	883.0	785.0 28.0			085206514} 32.884240085206514
		0 178.0	7.0	941.0	774.0 28.0			236852298} 27.641907236852298
145.0		0 181.0	11.0	979.0	812.0 28.0			253351152} 13.215764253351152
145.0 1 145.4		0 184.0	5.7	833.0	880.0 28.0			272574064} 26.058585272574064 214544457} 10.710317214544457
143.4	0.0 178.9		7.8	824.0	868.7 28.0		10.54 {10.710317	
only showing top 20 ro								

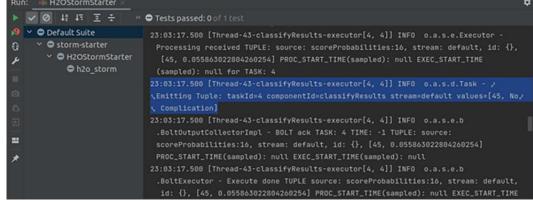
Chapter 13: Using H2O AutoML with Other Technologies


fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality	color
6.8	0.18	0.37	1.6	0.055	47	154	0.9934	3.08	0.45	9.1	5	white
7.2	0.27	0.74	12.5	0.037	47	156	0.9981	3.04	0.44	8.7	5	white
7	0.39	0.31	5.3	0.169	32	162	0.9965	3.2	0.48	9.4	5	white
9.2	0.25	0.34	1.2	0.026	31	93	0.9916	2.93	0.37	11.3	7	white
7.4	0.35	0.24	6	0.042	28	123	0.99304	3.14	0.44	11.3	5	white
6.5	0.3	0.39	7.8	0.038	61	219	0.9959	3,19	0.5	9.4	5	white
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5	red
7.0	0.70	0.04					0.557	3.20	0.03			




```
The Fort State are turned on the State of th
```


```
{
  "labelIndex" : 1,
  "label" : "white",
  "classProbabilities" : [
    0.0,
    1.0
  ],
  "quality" : 5.31746032124474
}
```



age	anemia	creatinine_ phosphokinase	high_ blood_ pressure	diabetes	ejection_ fraction	platelets	sex	serum_ creatinine	serum_ sodium	smoking	time	complications
75	0	582	1	0	20	265000	1	1.9	130	0	4	1
55	0	7861	0	0	38	263358	1	1.1	136	0	6	1
65	0	146	0	0	20	162000	1	1.3	129	1	7	1
50	1	111	0	0	20	210000	1	1.9	137	0	7	1
65	1	160	0	1	20	327000	0	2.7	116	0	8	1
90	1	47	1	0	40	204000	1	2.1	132	1	8	1

