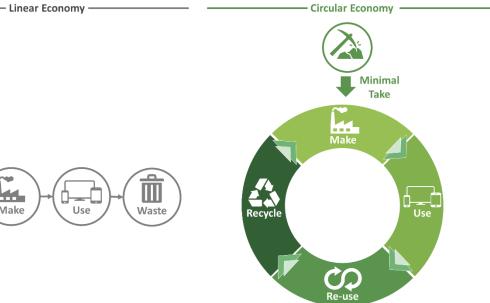

## **Chapter 1: Our Most Significant Challenge Ahead**












| A Dramatically Different top 12 |                     |                   |                     |  |
|---------------------------------|---------------------|-------------------|---------------------|--|
| Top 12 in 2022                  | Market<br>CAP (\$B) | Top 12 in 2015    | Market<br>CAP (\$B) |  |
| Apple                           | \$2 652             | Apple             | \$710               |  |
| Microsoft                       | \$2 222             | Alphabet/Google   | \$449               |  |
| Alphabet/Google                 | \$1 951             | Microsoft         | \$368               |  |
| Amazon                          | \$1 446             | Exxon Mobil       | \$334               |  |
| Meta/Facebook                   | \$843               | Wells Fargo       | \$297               |  |
| Berkshire Hathaway              | \$682               | Johnson & Johnson | \$274               |  |
| lencent                         | \$573               | Facebook          | \$272               |  |
| ohnson & Johnson                | \$434               | General Electric  | \$259               |  |
| IP Morgan Chase                 | \$427               | JP Morgan Chase   | \$255               |  |
| Wal-Mart Stores                 | \$388               | Amazon            | \$247               |  |
| Alibaba                         | \$344               | Wal-Mart Stores   | \$230               |  |
| Exxon Mobil                     | \$307               | Proctor & Gamble  | \$218               |  |

Data: https://companiesmarketcap.com/ 2022 valuations as 1/28/22





## **Chapter 2: Rise of Sustainable IT**



1-2% of the world's energy is consumed by data centers



The number of devices is expected to reach **55.7** billion in 2025



**57** million tons of e-waste were generated worldwide in 2021

#### Sustainable IT (direct CO<sub>2</sub>e reduction)



Sustainable SW Development





**Energy Management** 

#### Sustainable by IT (indirect CO<sub>2</sub>e reduction)



## **Direct Emissions** Sustainable IT Taxonomy© Owned Assets

Operator activities

#### **Direct Emissions** Energy Purchased

Purchased electricity, heating & cooling for own Data Centers, Networks, Servers & End User IT Equipment

#### **All other Indirect Emissions** 3rd Party

- Data Center construction IaaS / PaaS / SaaS ICT Equipment

- Software
- Professional Svc. Providers



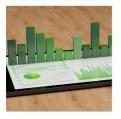
Legislation

Investor, social and political Pressure

Customer requirements Responsible business ecosystems

New market opportunities Cost reductions



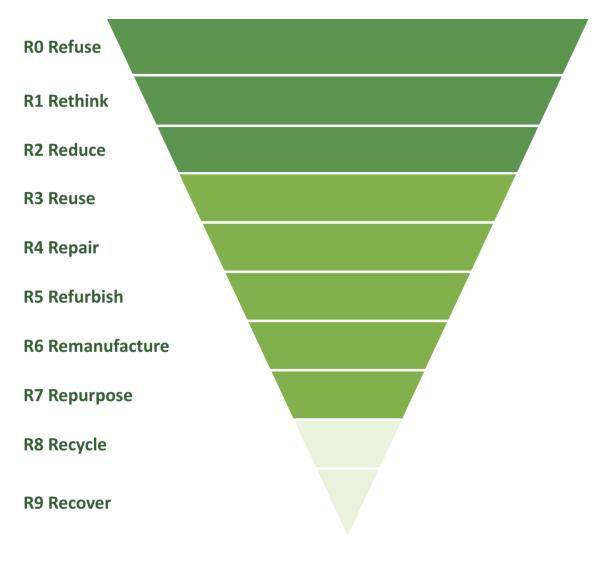

Financial value

Non-financial value

e Risks

Employee engagement

Readiness

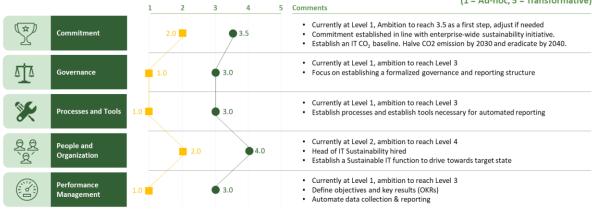






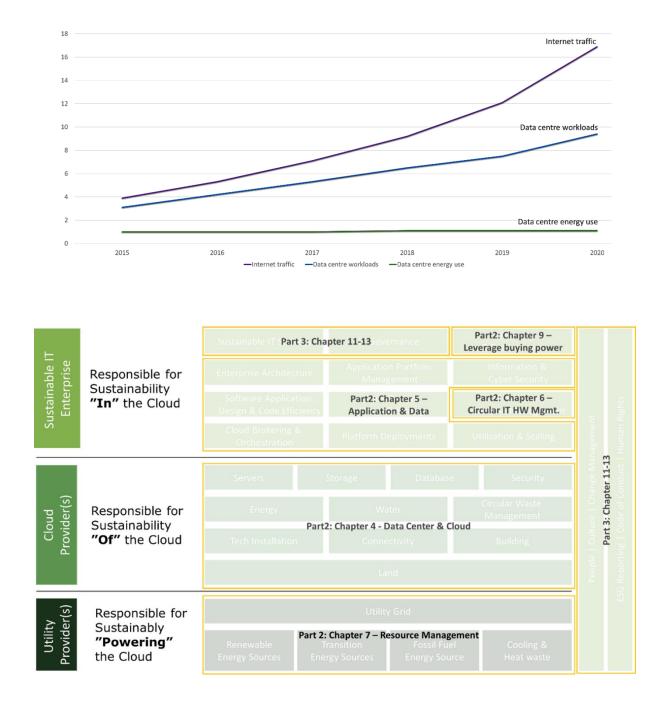





| Commitment         Governance         Processes and Tools         People and<br>Organization         Peo |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|   | Assess<br>Current State            |              | Set Ambition<br>Target State                            |   | Compare<br>Current and Target State                                               |   | Set Direction<br>of travel                                                        |
|---|------------------------------------|--------------|---------------------------------------------------------|---|-----------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------|
| ~ | What is your starting point today? | $\checkmark$ | What is your ambition?                                  | ~ | What is your gap<br>between current and<br>target state?                          | ~ | What is your timeline to<br>close the gap between<br>current and target<br>state? |
| ~ | What is your current maturity?     | $\checkmark$ | Is your ambition aligned<br>with corporate<br>ambition? | ~ | What capabilities are<br>needed in terms of<br>people, process and<br>technology? | ~ | What are the key<br>milestones along the<br>roadmap?                              |


## Baseline Target state ambition (1 = Ad-hoc, 5 = Transformative)

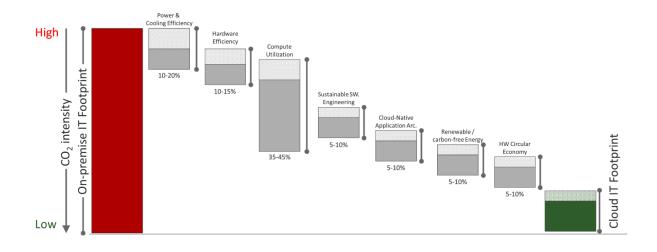
Baseline



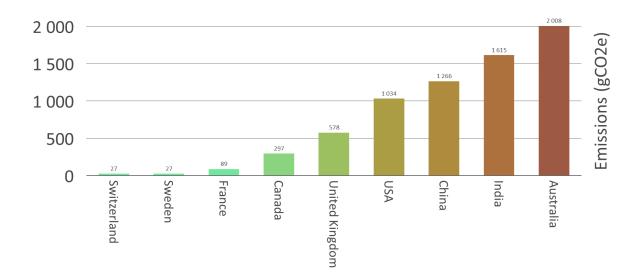

|            |              | Baseline                                                                                                                                   |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|            |              | Current state Target state ambition                                                                                                        |
|            | 1 2 3 4      | 5 <u>Comments</u> (1 = Ad-hoc, 5 = Transformative)                                                                                         |
| Group      | 1.0 1.5 03.0 | <ul> <li>Ambition to reach a minimum of 3.0 on group level</li> <li>Collectively current state sits at 1.5</li> </ul>                      |
| Division 1 | 2.0 1.5 4.0  | <ul> <li>Ambition to move from level 2 to Level 4</li> <li>Current state sits at 2.0, has not progressed from the baseline</li> </ul>      |
| Division 2 | 1.0          | <ul> <li>Ambition to move from level 1 to Level 3</li> <li>Current state sits at 2.0, has moved up one level</li> </ul>                    |
| Division 3 | 2.0 3.0 4.0  | <ul> <li>Ambition to move from level 2 to Level 4</li> <li>Current state sits at 3.0, has moved up one level from baseline</li> </ul>      |
| Division 4 | 1.5          | <ul> <li>Ambition to move from level 1.5 to Level 3</li> <li>Current state sits at 2.0, has moved up half a level from baseline</li> </ul> |

# Chapter 3: The Fundamental Building Blocks of a Sustainable IT Practice

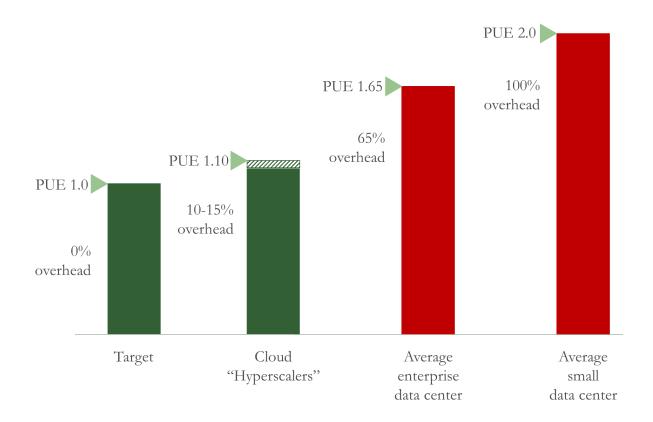



## **Chapter 4: Data Center & Cloud**




| 3<br>Service<br>Models | 4<br>Deployment<br>Models | 5<br>Essential<br>Characteristics |
|------------------------|---------------------------|-----------------------------------|
| Software               | Public Cloud              | Service-based                     |
| Platform               | Private Cloud             | • Scalable / elastic              |
| Infrastructure         | • Hybrid Cloud            | Shared resources                  |
|                        | Community Cloud           | • Measured / metered              |
|                        |                           | Uses Internet                     |



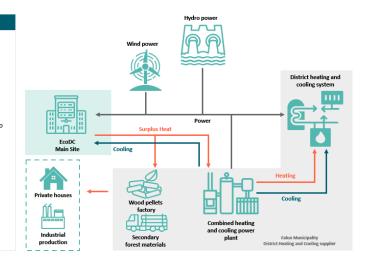


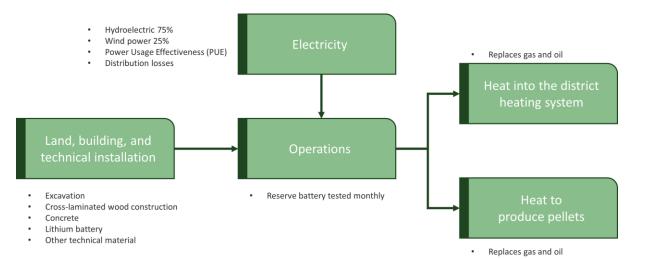







 $PUE = \frac{Total \ facility \ energy}{IT \ equipment \ energy}$ 





| De | escription              | Metric        | General Requirement                                                                                    | United Nations Sustainable<br>Development Goals Alignment                                |
|----|-------------------------|---------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|    | Energy<br>nsumption     | GWh<br>mtCO2e | <b>CUE</b><br>Carbon Usage Effectiveness                                                               | 7. Affordable and Clean Energy<br>13. Climate Action                                     |
|    | newable<br>Energy       | %             | <b>REF</b><br>Renewable Energy Factor                                                                  | 9. Industry, Innovation and Infrastructure<br>12. Responsible Consumption and Production |
|    | ver Usage<br>ectiveness | PUE           | <b>PUE</b><br>Power Usage Effectiveness                                                                | 12. Responsible Consumption and Production<br>13. Climate Action                         |
|    | stainable<br>Water      | WUE           | WUE<br>Water Usage Effectiveness                                                                       | 6. Clean Water and Sanitation                                                            |
|    | Waste<br>nagement       | Ton<br>%      | <b>ERF - EDE</b><br>Energy Reuse Factor<br>Electronics Disposal Efficiency<br>Reduce – Reuse - Recycle | 12. Responsible Consumption and Production                                               |

#### Main sustainability drivers

#### Renewable power

- $-\,$  100% of energy comes purely from renewable sources such as hydro and wind power - Close proximity to renewable power sources minimizes distribution losses
- Unique heat re-usage<sup>(1)</sup>
  - Heat re-usage system feeds surplus heat into District Heating Plant and a
- pellet factory, and thereby avoiding huge volumes of emissions Pellet factory uses sawdust and surplus heat to create pellets which is used to warm private houses and businesses not connected to the district heating
- Additional sustainability initiatives
  - Reflects construction process and use of wood as primary material (vs. concrete)
  - Sustainability report to customers utilizes Green House Gas Protocol  $^{\rm (2)}$  scope 1, 2 and 3

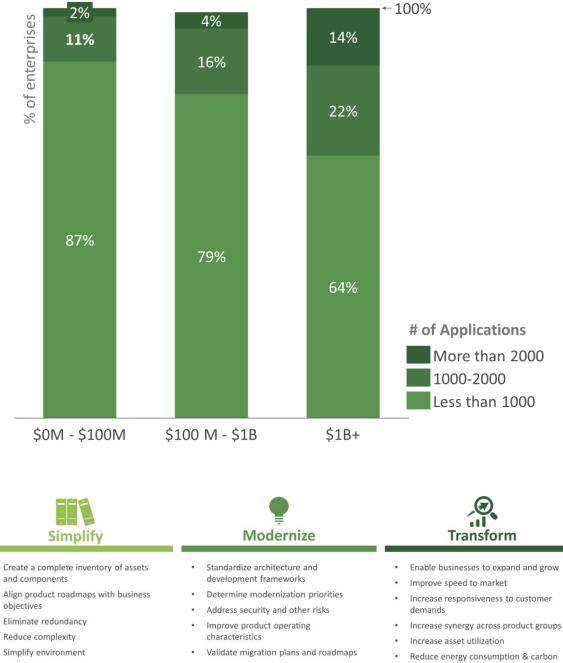




| Emissions per kWh | Gree | enhouse Gas Prot | ocol (GHG) | Total | Avoided emissions | Total |
|-------------------|------|------------------|------------|-------|-------------------|-------|
| Scope             | I    | П                | III        | lotai | IV                | Iotai |
| Land              | -    | -                | 0,0        | 0,0   | -                 | 0,0   |
| Building          | -    | -                | 0,1        | 0,1   | -                 | 0,1   |
| Tech installation | -    | -                | 1,1        | 1,1   | -                 | 1,1   |
| Operations        | 1,3  | -                | 0,9        | 2,2   | -                 | 2,2   |
| Power             | -    | 10,5             | 0,0        | 10,5  | -                 | 10,5  |
| Heat re-usage     | 1,7  | -                | -          | 1,7   | -48,9             | -47,2 |
| TOTAL             | 3,0  | 10,5             | 2,1        | 15,6  | -48,9             | -33,3 |

| Company   | 2020<br>Carbon Footprint<br>(MtCO2e) | Carbon Neutral<br>Target | Net-Zero<br>Carbon Emission<br>Target | Renewable Energy<br>Target | Water<br>Target | Waste<br>Target |
|-----------|--------------------------------------|--------------------------|---------------------------------------|----------------------------|-----------------|-----------------|
| Microsoft | 13.8                                 | 2012                     | 2030                                  | 2025                       | 2030            | 2030            |
| Google    | 10.3                                 | 2007                     | 2030                                  | 2030                       | 2030            | 2030            |
| AWS       | 60.6                                 | 2040                     | -                                     | 2025                       | -               | -               |
| Alibaba   | 9.51                                 | 2030                     | -                                     | -                          | -               | -               |
| Oracle    | 80.9                                 | -                        | 2050                                  | 2025                       | -               | -               |
| Tencent   | 5.1                                  | 2030                     | -                                     | 2030                       | -               | -               |
| IBM       | 132.5                                | -                        | 2030                                  | 2030                       | -               | -               |



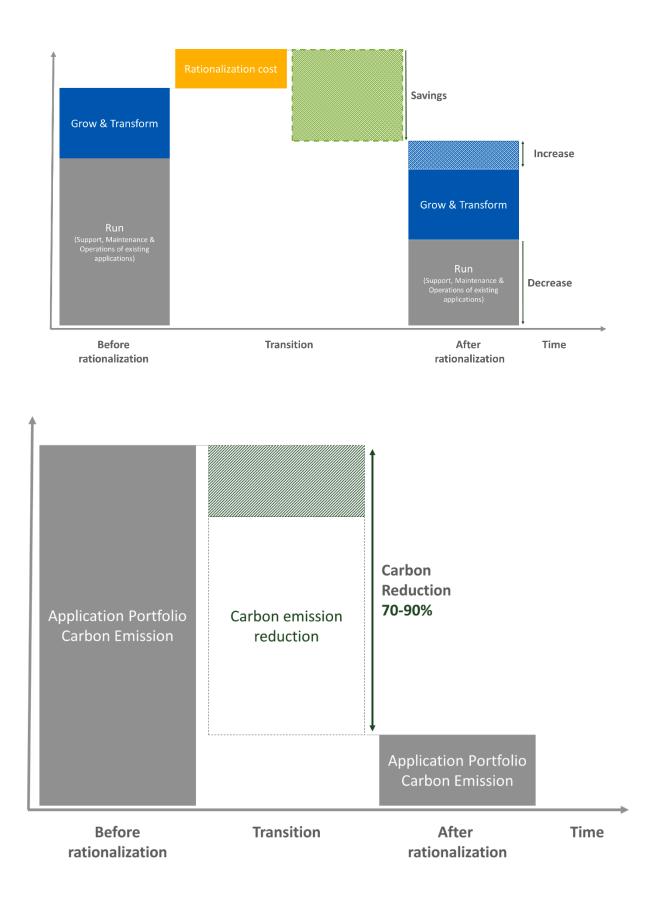


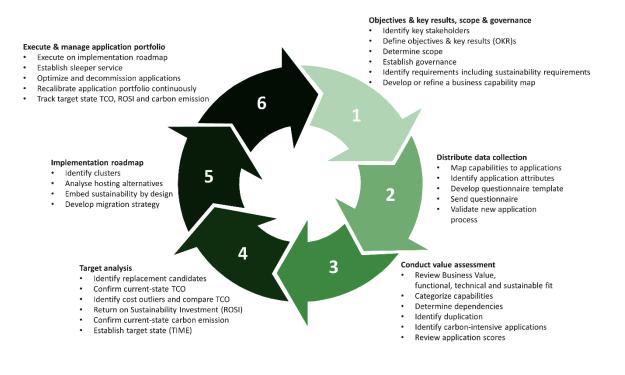


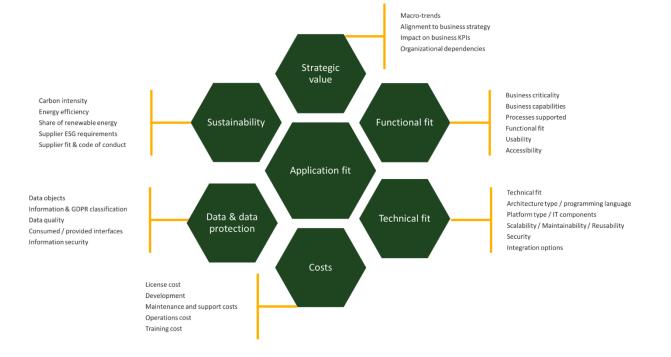





## **Chapter 5: Application & Data**



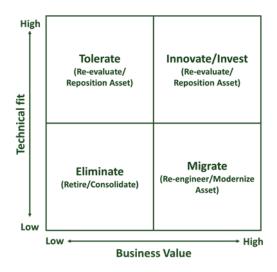


 Optimize development & support staffing models & skills

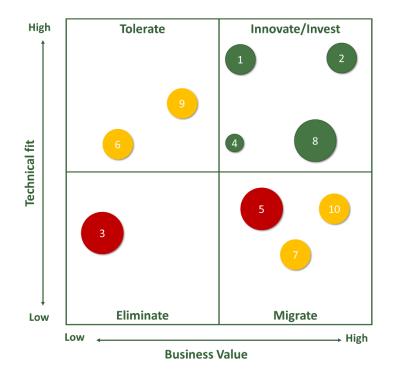

•

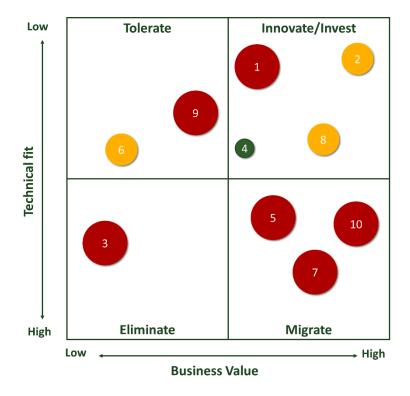
.

- Reduce development & support costs
- Reduce energy consumption & carbon intensity



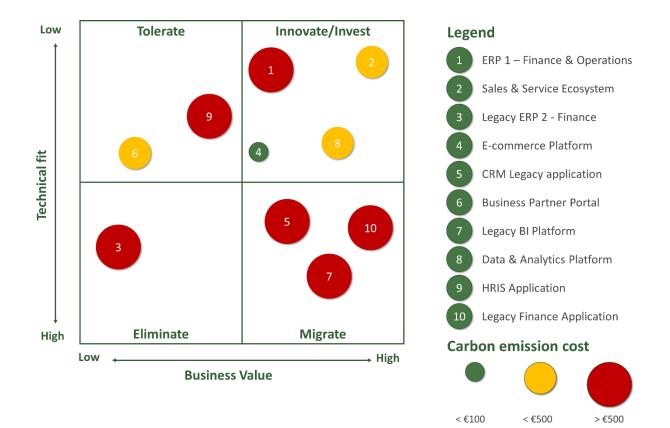




| Application ID        | 1                                                                                                               | 2                                                     | 3                                    | 4                        | 5                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|--------------------------|------------------------|
| Application Name      | ERP 1 – Finance & Operations                                                                                    | Sales & Service Ecosystem                             | Legacy ERP 2 - Finance               | E-Commerce Platform      | CRM Legacy application |
| Business criticality  | Business critical                                                                                               | Business operational                                  | Business operational                 | Mission critical         | Administrative service |
| Business capabilities | Finance, manufacturing &<br>logistics                                                                           | Sales, marketing, customer<br>service & field service | Finance                              | Sales & customer service | Sales                  |
| Processes supported   | Order to cash, procure to pay,<br>forecast to plan, plan to<br>produce, record to report &<br>acquire to retire | Quote to cash & service to cash                       | Record to report & acquire to retire | Quote to cash            | Quote to cash          |
| Functional fit        | Perfect                                                                                                         | Appropriate                                           | Unreasonable                         | Appropriate              | Insufficient           |
| Usability             | Appropriate                                                                                                     | Perfect                                               | Unresonable                          | Appropriate              | Insufficient           |
| Accessibility         | Appropriate                                                                                                     | Appropriate                                           | Insufficient                         | Appropriate              | Insufficient           |

| Application ID       | 1                            | 2                         | 3                      | 4                          | 5                      |
|----------------------|------------------------------|---------------------------|------------------------|----------------------------|------------------------|
| Application Name     | ERP 1 – Finance & Operations | Sales & Service Ecosystem | Legacy ERP 2 - Finance | E-Commerce Platform        | CRM Legacy application |
| Application Type     | SaaS                         | SaaS                      | Client Server          | Client Server              | Client Server          |
| Application Platform | SAP S/4 Hana                 | Salesforce                | ECC 4.0                | IBM WebSphere Commerce 7.0 | CRM Dynamics 2011      |
| Database             | N/A                          | N/A                       | Oracle DB              | IBM DB2                    | MSSQL 2008 R2          |
| Middleware           | N/A                          | N/A                       | Oracle SOA Suite       | BizTalk 2016               | BizTalk 2016           |
| Operating System     | N/A                          | N/A                       | Suse Linux             | Suse Linux                 | Windows Server 2011    |
| Hardware             | N/A                          | N/A                       | Dell XPS, i7 2-core    | Dell PowerEdge M640P       | Dell XPS, i7 2-core    |
| Cloud Provider       | Community Cloud              | Community Cloud           | Private Cloud          | Private Cloud              | Private Cloud          |

| Application ID            | 1                            | 2                         | 3                      | 4                   | 5                      |
|---------------------------|------------------------------|---------------------------|------------------------|---------------------|------------------------|
| Application Name          | ERP 1 – Finance & Operations | Sales & Service Ecosystem | Legacy ERP 2 - Finance | E-Commerce Platform | CRM Legacy application |
| Carbon intensity          | High                         | Medium                    | High                   | Medium              | High                   |
| Energy efficiency         | Appropriate                  | Appropriate               | Unreasonable           | Insufficient        | Unreasonable           |
| Share of renewable energy | 100%                         | 100%                      | 0%                     | 100%                | 0%                     |
| Supplier fit              | Strategic                    | Strategic                 | Exit                   | Tactical            | Exit                   |
| Code of conduct           | Signed                       | Signed                    | Not signed             | Signed              | Not signed             |
| ESG requirements met      | Partially                    | Met                       | Not met                | Partially           | Not met                |

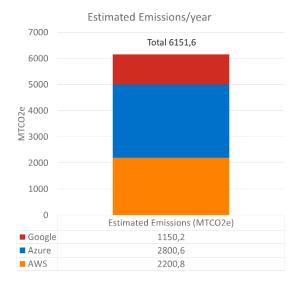


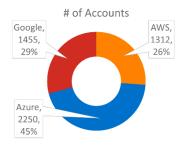








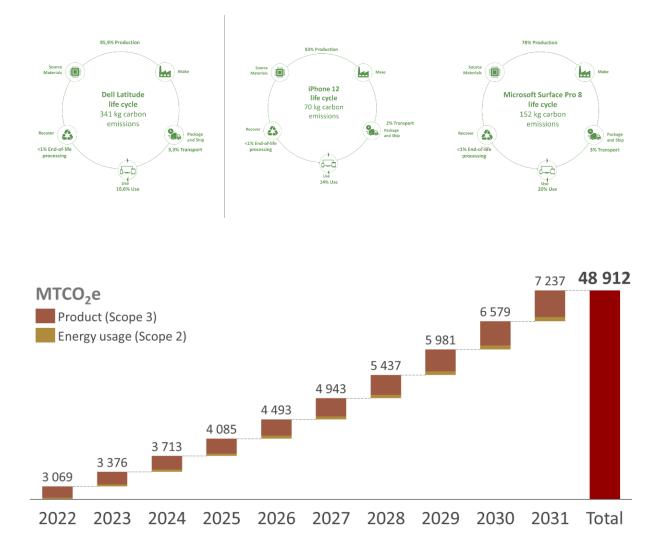


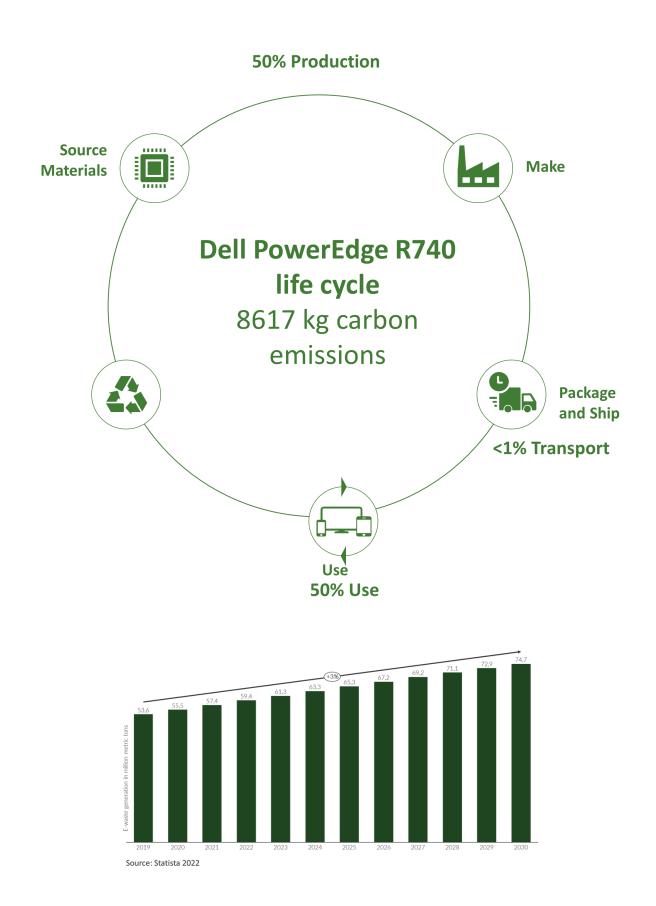



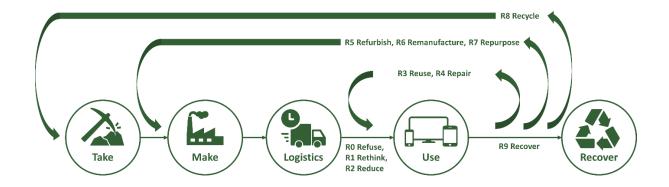

| Imperative | Object-oriented                                    | Functional | Scripting  |
|------------|----------------------------------------------------|------------|------------|
| • Ada      | • Ada • Perl                                       | • Erlang   | • Dart     |
| • C        | • C++ • PHP                                        | • F#       | • Hack     |
| • C++      | • C# • Python                                      | • Haskell  | JavaScript |
| • F#       | Chapel     Racket                                  | • Lisp     | • JRuby    |
| • Fortran  | • Dart • Rust                                      | • OCaml    | • Lua      |
| • Go       | • F# • Smalltalk                                   | • Perl     | • Perl     |
| • OCaml    | • Java • Swift                                     | • Racket   | • Python   |
| • Pascal   | <ul> <li>JavaScript</li> <li>TypeScript</li> </ul> | • Ruby     | • Ruby     |
| • Rust     | • OCaml                                            | • Rust     | TypeScript |

| Time & Memory Energy & Time  |                        | Energy & Memory                            | Energy, Time & Memory           |  |  |
|------------------------------|------------------------|--------------------------------------------|---------------------------------|--|--|
| C   Pascal   Go              | С                      | C   Pascal                                 | C   Pascal   Go                 |  |  |
| Rust   C++   Fortran         | Rust                   | Rust   C++   Fortran   Go                  | Rust   C++   Fortran            |  |  |
| Ada                          | C++                    | Ada                                        | Ada                             |  |  |
| Java   Chapel   Lisp   OCaml | Ada                    | Java   Chapel   Lisp                       | Java   Chapel   Lisp   Ocaml    |  |  |
| Haskell   C#                 | Java                   | OCaml   Swift   Haskell                    | Swift   Haskell   C#            |  |  |
| Swift   PHP                  | Pascal   Chapel        | C#   PHP                                   | Dart   F#   Racket   Hack   PHP |  |  |
| F#   Racket   Hack   Python  | Lisp   OCaml   Go      | Dart   F#   Racker   Hack   Python         | JavaScript   Ruby   Python      |  |  |
| JavaScript   Ruby            | Fortran   Haskell   C# | JavaScript   Ruby                          | TypeScript   Erlang             |  |  |
| Dart   TypeScript   Erlang   | Swift                  | TypeScript<br>Erlang   Lua   Perl<br>JRuby | Lua   JRuby   Perl              |  |  |
| JRuby   Perl                 | Dart   F#              |                                            |                                 |  |  |
| Lua                          | JavaScript             |                                            |                                 |  |  |
|                              | Racket                 |                                            |                                 |  |  |
|                              | TypeScript   Hack      |                                            |                                 |  |  |
|                              | PHP                    |                                            |                                 |  |  |
|                              | Erlang                 |                                            |                                 |  |  |
|                              | Lua   JRuby            |                                            |                                 |  |  |
|                              | Ruby                   |                                            |                                 |  |  |

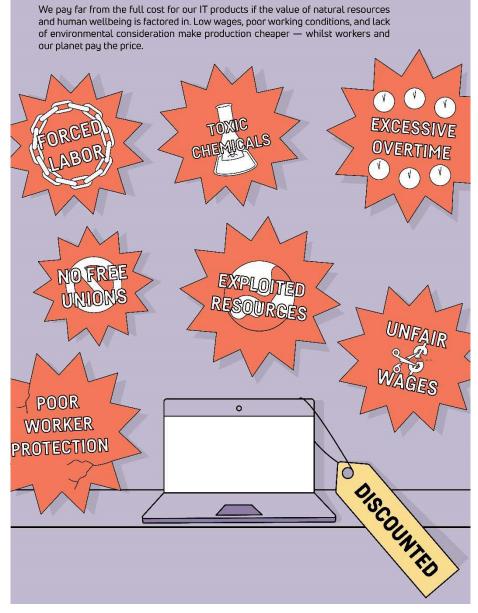


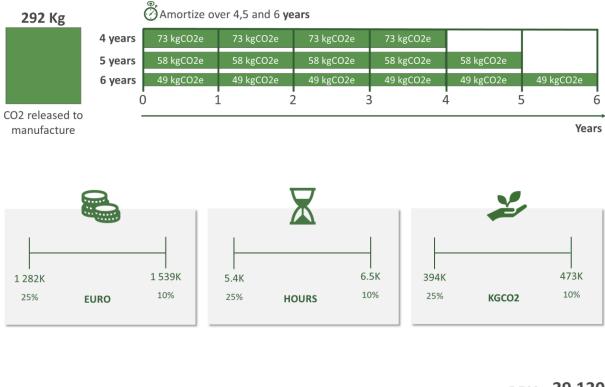


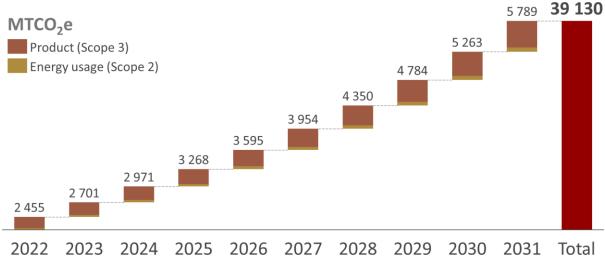



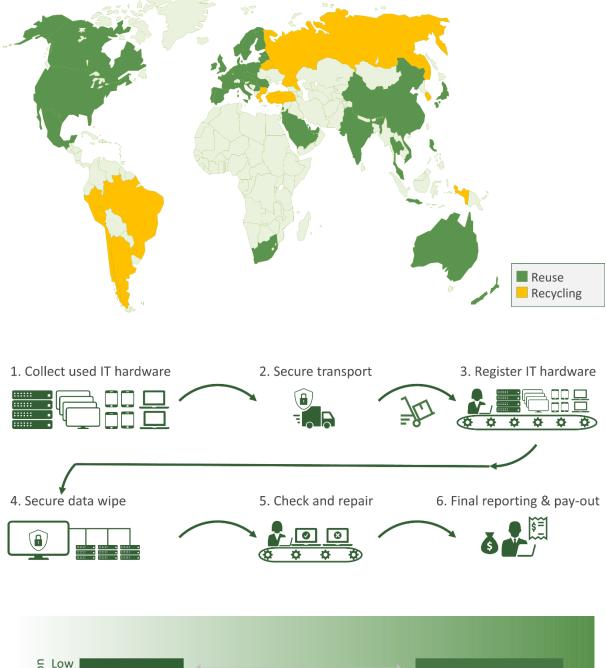


#### Emission Intensity per Account

| Provider | Emissions<br>(MTCO2e) | # of Accounts | Emission Intensity /<br>Account |
|----------|-----------------------|---------------|---------------------------------|
| AWS      | 2200,8                | 1312          | 1,68                            |
| Azure    | 2800,6                | 2250          | 1,24                            |
| Google   | 1150,2                | 1455          | 0,79                            |


## **Chapter 6: IT Hardware Management**



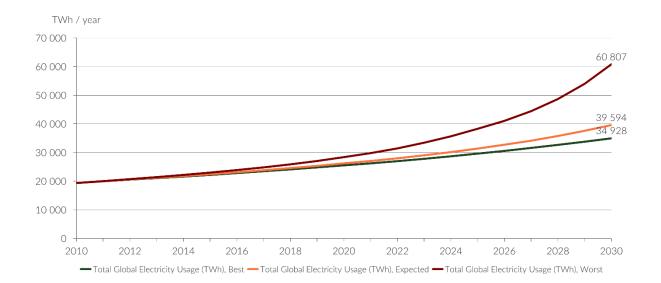


#### LOW PRICES – AT A HIGH COST

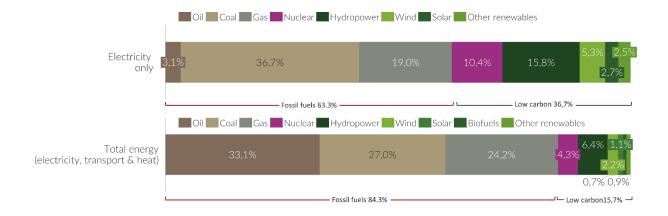


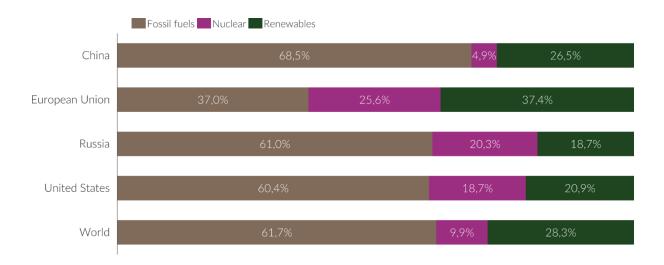


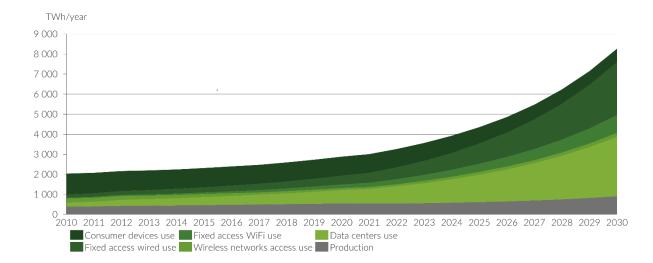








| Company | 2020<br>Carbon Footprint<br><sub>(MtCO2e)</sub> | Carbon Neutral<br>Target | Net-Zero<br>Carbon Emission<br>Target | Renewable Energy<br>Target | Water<br>Target | Waste<br>Target |
|---------|-------------------------------------------------|--------------------------|---------------------------------------|----------------------------|-----------------|-----------------|
| Lenovo  | 150                                             | -                        | 2050                                  | -                          | -               | -               |
| HP      | 44.9                                            | 2025                     | 2040                                  | 2040                       | -               | 2025            |
| Dell    | 298.5                                           | -                        | 2050                                  | 2040                       | -               | -               |
| Apple   | 22.6                                            | 2020                     | 2030                                  | 2020                       | -               | -               |
| Acer    | 12.2                                            | -                        | 2050*                                 | 2025                       | -               | -               |
| Asus    | 1,221.3                                         | -                        | -                                     | 2035                       | -               | -               |


# Scope 1 & 2 only, \*80 percent by 2050


| Description           | Metric | General Requirement                   | United Nations Sustainable<br>Development Goals Alignment        |
|-----------------------|--------|---------------------------------------|------------------------------------------------------------------|
| Equipment<br>lifetime | Years  | Equipment lifetime years              | 12. Responsible Consumption and Production<br>13. Climate Action |
| Renewable             | %      | <b>REF</b>                            | 9. Industry, Innovation and Infrastructure                       |
| energy                |        | Renewable Energy Factor               | 12. Responsible Consumption and Production                       |
| Circular economy      | %      | Reuse and Repair                      | 12. Responsible Consumption and Production                       |
| reuse and repair      |        | % equipment reused                    | 13. Climate Action                                               |
| Zero waste            | WUE    | <b>Recycle</b>                        | 12. Responsible Consumption and Production                       |
| to landfill           |        | % equipment reused                    | 13. Climate Action                                               |
| Hazardous             | %      | Hazardous Substances                  | 12. Responsible Consumption and Production                       |
| substances            |        | % equipment with hazardous substances | 13. Climate Action                                               |



### **Chapter 7: Power Energy Management**







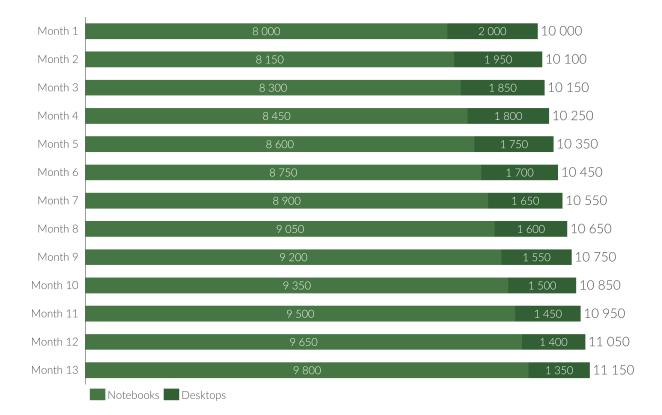


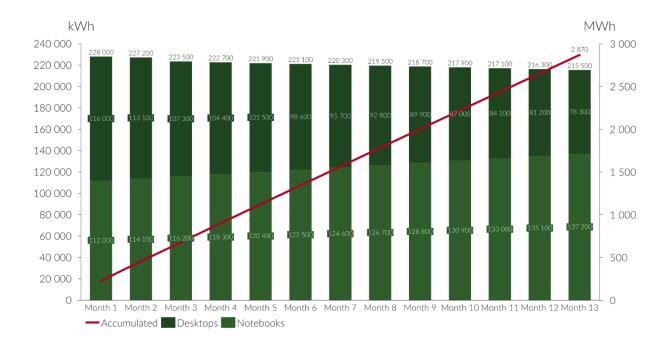
 $\left( \left[ \frac{\text{the capacity of appliance expressed in watt}}{1000} \right] \right) \times [\# \text{ of hours'use}] \times [\# \text{ of days'use}]$  = # of kWh

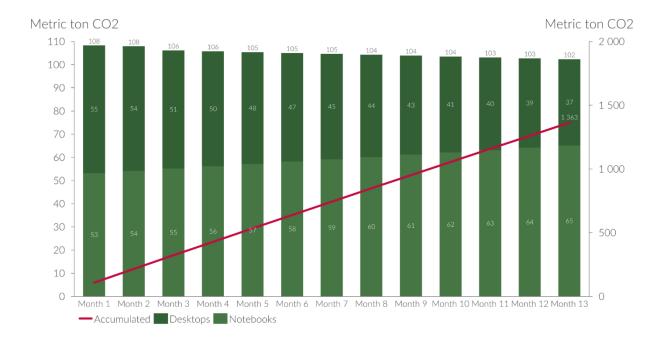
 $[number of kWh] \times [carbon intensity MTCO2/kWh] = carbon emission MtCO2$ 

$$\frac{Carbon \ emission \ MtCO2}{0.011 \ MtCO2 \ tree \ year} = \# \ trees \ per \ year \left( \left[ \frac{50}{1000} \right] \right) \times [8] \times [275] = 110 \ kWh$$

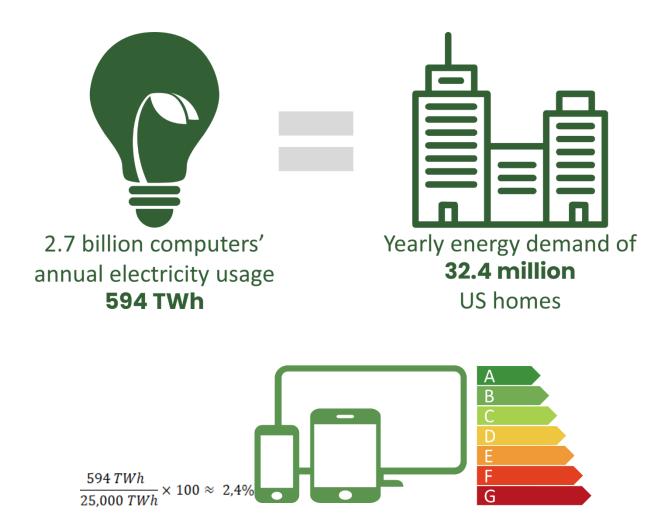
 $\left(\left[\frac{100}{1000}\right]\right) \times [8] \times [275] = 220 \ kWh_{110} \ kWh \times 0.000475 \ MtCO2/kWh = 0.05 \ MtCO2$ 


 $200 \, kWh \times 0.000475 \, MtCO2/kWh = 0.10 \, MtCO2_{0.011}^{0.05} = 4.5 \, trees \, per \, year$ 


$$\frac{0.10}{0.011} = 9 \ trees \ per \ year\left(\left[\frac{200}{1000}\right]\right) \times [8] \times [275] = 440 \ kWh$$


440 kWh × 0,000475 MtCO2/kWh =  $0.21 MtCO2 \frac{0.21}{0.011} = 19$  trees per year

$$\left(\left[\frac{300}{1000}\right]\right) \times [24] \times [365] X [80\%] = 2\ 102\ kWh$$


 $2\ 102\ kWh \times 0.000475 \frac{MtCO2}{kWh} = 0.999\ MtCO2 = 1.0\ MtCO2 \frac{1.0}{0.011} = 91\ trees\ per\ year$ 



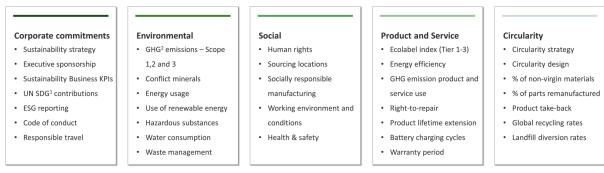




 $\left( \left[ \frac{100}{1000} \right] \right) \times [8] \times [275] \times 2,700,000,000 = 594,000,000,000 \ kWh \ (kilowatt \ hours)$ = 594,000,000 MWh (megawatt hours) = 594 000 GWh (gigawatt \ hours) = 594 TWh \ (terawatt \ hours)



| Settings                       |                                                                    |
|--------------------------------|--------------------------------------------------------------------|
| <b>企 Home</b>                  | Power & sleep                                                      |
| Find a setting                 | Screen                                                             |
| System                         | On battery power, turn off after                                   |
| 🖵 Display                      |                                                                    |
| 句》) Sound                      | When plugged in, turn off after 10 minutes                         |
| Notifications & actions        |                                                                    |
| D Focus assist                 | Sleep                                                              |
| ( <sup>1</sup> ) Power & sleep | On battery power, PC goes to sleep after $15 \text{ minutes} \vee$ |
| Battery                        |                                                                    |
| 📼 Storage                      | When plugged in, PC goes to sleep after 15 minutes                 |
| 다. Tablet                      |                                                                    |


| Power Options                                                                                                               | ?       | ×   |
|-----------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Advanced settings                                                                                                           |         |     |
| Select the power plan that you want to custor<br>then choose settings that reflect how you wan<br>computer to manage power. |         |     |
| Balanced [Active] ~                                                                                                         |         |     |
| <ul> <li>★ Desktop background settings</li> <li>★ Sleep</li> <li>★ Display</li> <li>★ Battery</li> </ul>                    |         |     |
| Restore plan d                                                                                                              | efaults |     |
| OK Cancel                                                                                                                   | Ap      | ply |

| 000               |                           |                    | System Pr          | eferences            |                        | Q Search  |                 |
|-------------------|---------------------------|--------------------|--------------------|----------------------|------------------------|-----------|-----------------|
| General           | Desktop &<br>Screen Saver | Dock               | Mission<br>Control | Language<br>& Region | Security<br>& Privacy  | Spotlight | Notifications   |
| Displays          | Energy<br>Saver           | Keyboard           | Mouse              | Trackpad             | Printers &<br>Scanners | Sound     | Startup<br>Disk |
| iCloud            | Internet<br>Accounts      | Software<br>Update | Network            | Bluetooth            | Extensions             | Sharing   |                 |
| Users &<br>Groups | Parental<br>Controls      | Siri               | Date & Time        | Time<br>Machine      | Accessibility          |           |                 |
| Java              |                           |                    |                    |                      |                        |           |                 |

| ••• • • •                                                           | Energy Saver                                                | Q Search                   |
|---------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|
|                                                                     | Battery Power Adapter                                       |                            |
| Turn display off after:                                             | 15 min 1                                                    |                            |
| 🗹 Put hard disks to sleep when p                                    | ossible                                                     |                            |
| ✓ Slightly dim the display while a                                  | on battery power                                            |                            |
| Enable Power Nap while on bat<br>While sleeping, your Mac can perio | tt <b>ery power</b><br>dically check for new email, calenda | r and other iCloud updates |
| Current battery charge: 88%                                         |                                                             | Restore Defaults           |
| ✓ Show battery status in menu bar                                   |                                                             | Schedule ?                 |


| $\bullet \bullet \circ \checkmark $                                                                                                                                                       | Energy Saver                        | Q Search         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|--|--|--|--|--|
|                                                                                                                                                                                           | Battery Power Adapter               |                  |  |  |  |  |  |
| Turn display off after:<br>1 min                                                                                                                                                          | 15 min 1 h                          | r 3 hrs Never    |  |  |  |  |  |
| Prevent computer from sleep                                                                                                                                                               | ping automatically when the display | y is off         |  |  |  |  |  |
| Put hard disks to sleep when                                                                                                                                                              | possible                            |                  |  |  |  |  |  |
| 🗹 Wake for Wi-Fi network acce                                                                                                                                                             | SS                                  |                  |  |  |  |  |  |
| Enable Power Nap while plugged into a power adapter<br>While sleeping, your Mac can back up using Time Machine and periodically check for new email,<br>calendar and other iCloud updates |                                     |                  |  |  |  |  |  |
| Current battery charge: 88%                                                                                                                                                               |                                     | Restore Defaults |  |  |  |  |  |
| ✓ Show battery status in menu bar                                                                                                                                                         |                                     | Schedule ?       |  |  |  |  |  |

# **Chapter 8: Leveraging Your Buying Power**

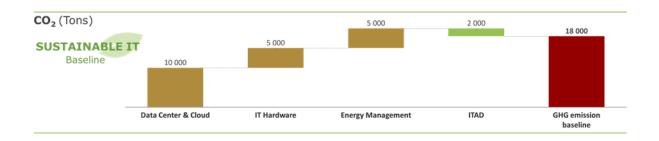


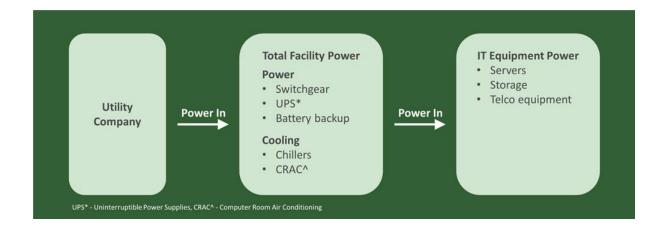
UN SDG - United Nations Sustainable Development Go
 GHG – Greenhouse gas emissions

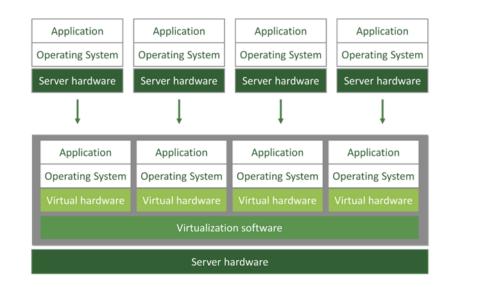




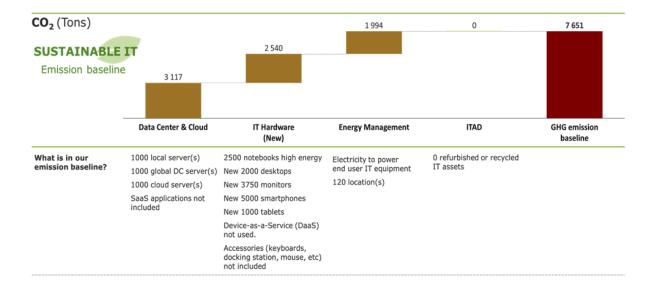
| Description                  | Metric        | General Requirement                                                                                    |  | United Nations Sustainable<br>Development Goals Alignment                                |     |
|------------------------------|---------------|--------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------|-----|
| Energy<br>Consumption        | GWh<br>mtCO2e | <b>CUE</b><br>Carbon Usage Effectiveness                                                               |  | 7. Affordable and Clean Energy<br>13. Climate Action                                     |     |
| Renewable<br>Energy          | %             | <b>REF</b><br>Renewable Energy Factor                                                                  |  | 9. Industry, Innovation and Infrastructure<br>12. Responsible Consumption and Production |     |
| Power Usage<br>Effectiveness | PUE           | <b>PUE</b><br>Power Usage Effectiveness                                                                |  | 12. Responsible Consumption and Production<br>13. Climate Action                         |     |
| Sustainable<br>Water         | WUE           | <b>WUE</b><br>Water Usage Effectiveness                                                                |  | 6. Clean Water and Sanitation                                                            |     |
| Waste<br>Management          | Ton<br>%      | <b>ERF - EDE</b><br>Energy Reuse Factor<br>Electronics Disposal Efficiency<br>Reduce – Reuse - Recycle |  | 12. Responsible Consumption and Production                                               |     |
|                              |               |                                                                                                        |  |                                                                                          | . – |


| Description                          | Metric            | General Requirement                                           | United Nations Sustainable<br>Development Goals Alignment                                                                   |
|--------------------------------------|-------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| GHG<br>Emissions                     | kgCO <sub>2</sub> | Product Greenhouse gas emission                               | 12. Responsible Consumption and Production<br>13. Climate Action                                                            |
| Equipment<br>lifetime                | Years             | Equipment lifetime years                                      | 12. Responsible Consumption and Production<br>13. Climate Action                                                            |
| Renewable<br>energy                  | %                 | <b>REF</b><br>Renewable Energy Factor                         | 7. Affordable and clean energy<br>9. Industry, Innovation, and Infrastructure<br>12. Responsible Consumption and Production |
| Circular economy<br>reuse and repair | %                 | Reuse and Repair<br>% equipment reused                        | 12. Responsible Consumption and Production<br>13. Climate Action                                                            |
| Zero waste<br>to landfill            | WUE               | <b>Recycle</b><br>% equipment reused                          | 12. Responsible Consumption and Production<br>13. Climate Action                                                            |
| Hazardous<br>substances              | %                 | Hazardous Substances<br>% equipment with hazardous substances | 12. Responsible Consumption and Production<br>13. Climate Action                                                            |


# **Chapter 9: Sustainability by IT**

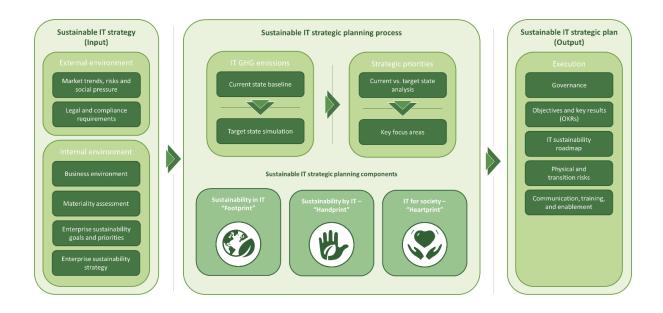






# **Chapter 10: Get started today**





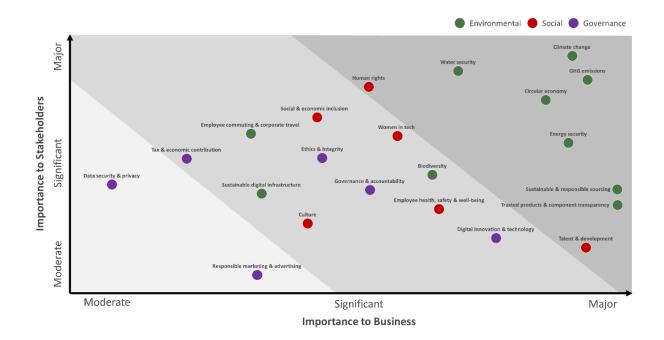









# Chapter 11: Putting a Sustainable IT Strategy in place




We need to take a comprehensive – 360-degree – view of sustainability from every angle. Our **DEGREE** framework sets clear priorities for Sustainability at Siemens



#### D Accelerating DEGREE in IT, through IT and to society Highlights & Achievements from Q2 FY22 6 IT for Sustainability IT enables DEGREE at Siemens Enterprise Sustainable IT **IT to Society** 2000 1 ation through Pickur ny & Austria) and gle th 84 dif ent e Op (Ge n & ation across all Sie ns sites DEC REE reporting for ot initiative, contribution with Had n of a specific IT Supplier que aire to ental data for products & services and mostly automatic chools (8<sup>th</sup> grade and higher) the UN Sustainable Dev. Goa t in mvIT / mvMall. on Footprint of IT equipment displayed the raise awareness and mindset shift Tri d to rai (Earth Day, Digital Clean-up Day), 4 -7 able smartphone in IT catalogue. Available ly in Germany & Austria, more countries soor is with ge (IT Café) th CF R, P&O EHS and SUE to ment the requirements of the EU t the requ CO2 emissions at AWS, Microsoft es and nly ac AfB te Inspire & Communicate and Fairs on virtual & hybrid external panels (LMU, University of asso Plattner Institute, Confare Frankfurt & Vienna, ISE Fair 5 po inter Logit rtners (<u>e.a.</u> IDC), sev .), COLLAB video wi creating an ecosystem to really make an impac s (CIO Ma na, etc.) ance Tool

SIEMENS



## **Environmental**

- Climate change
- GHG emissions
- Circular economy
- Water security
- Energy security
- Sustainable & responsible sourcing
- Trusted products & component
- transparency
   Biodiversity
- Biodiversity
- Sustainable digital infrastructure
- Employee commuting & corporate travel

## Social

- Human rights
- Talent & development
- Women in tech
- Social & economic inclusion
- Employee health, safety & wellbeing
- Culture

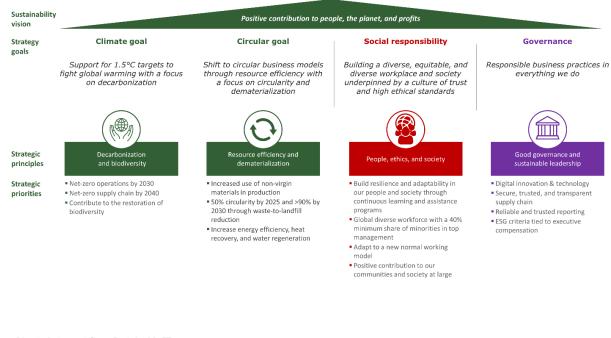
## Governance

- Digital innovation & technology
- Ethics & integrity
- Governance & accountability
- Tax & economic contribution
- Data security & privacy



Support for 1.5°C targets to fight global warming with a focus on decarbonization




Shift to circular business models through resource efficiency with a focus on circularity and dematerialization



Building a diverse, equitable, and diverse workplace and society underpinned by a culture of trust and high ethical standards



Responsible business practices in everything we do





#### Ô 舞 Sustainability goals Challenges and pain Capabilities and (☆) and targets points required step-change

#### Climate goals:

- Net-zero operations by 2030 Net-zero supply chain by 2040 Contribute to the restoration of biodiversity

#### Circularity:

- Increased use of non-virgin materials in roduction
- production
  50% circularity by 2025 and >90% by 2030 through waste-to-landfill reduction
  Increase energy efficiency, heat recovery, and water regeneration
- Social responsibility:

- OCIAI responsionity: Build resilience and adaptability in our people and society through continuous learning and assistance programs Global diverse workforce with a 40% minimum female share in top management Adapt to a new normal working model Positive contribution to our communities and residative at discussion and and and and and and and contribution to our communities and
- :

#### society at large Governance:

- Digital innovation & technology
- Secure, trusted, and transparent supply chain
- Reliable and trusted reporting ESG criteria tied to executive compensation

## Sustainability in IT – "Footprint"

- A large share of servers in high-carbon cloud and data centers
   No sustainability is embedded into application portfolio management or software development
   Limited energy management visibility and
- tracking
- A high turnover rate of IT hardware, limited repair, and reuse
- Limited sustainability requirements embedded ithin RF(X), contracts, etc

- widdlin Pr(A), contracts, etc.
   Sustainability by IT "Handprint"
   Visibility of current emission baseline
   Lifecycle assessment (LCA) of current product and service portfolio
   New rendered and service
- New regional and national regulatory
- requirements
- · Limited sustainability innovation in products & services

#### IT for society – "Heartprint"

- 15% of minorities share in top management Scarcity of trained sustainability professionals Limited sustainability training available

#### Sustainability in IT – "Footprint" Cloud & Data Cente

- Cloud & Data Center Application portfolio management Sustainable software development Efficient resource management Circular IT hardware management
- IT Asset disposition Vendor management and IT procurement

## Sustainability by IT - "Handprint"

- GHG emission visibility & report Digital innovation & technology
- Product as a service Sustainable supply chain incl.
- .
- product and services LCA visibility Energy-efficient buildings Hybrid-work

## IT for society - "Heartprint"

- Organizational enablement Social responsibility programs Women in tech
- Sustainability hackathons

## Objectives and key results

#### Sustainability in IT – "Footprint"

- Reduce a minimum of 70% CO2 emission from IT operations, including scope 3 by 2030 Reduce CO2 emission from Cloud & Data Center operations by 70% or more by 2050 Prolong lifespan of IT hardware

.

- Increase share of Device-as-a-Service (DaaS)
- Improve energy resource efficiency by 50% Remove one ton CO2 emission through ITAD per year by 2030 .

### Sustainability by IT – "Handprint"

- Enable sustainable digital innovation & technology
- technology Provide support for single source of truth for environmental data across the enterprise Support for supplier and scope 3 management IT for society "Heartprint" Awareness campaigns and formal training Initiate IT hardware and employee time donation programs

- programs Increase the share of women in IT roles by 30%

Sustainable IT

Strategy

WHY

#### WHAT We aim to reduce our carbon "footprint" and "handprint"

- Support for 1.5°C targets to fight global warming · Shift to circular business models through resource efficiency with a focus on circularity and dematerialization
- · Building a diverse, equitable, and inclusive workplace and society
- underpinned by a culture of trust and high ethical standards \* Responsible business practices in everything we do

generated by our digital infrastructure while increasing our "heartprint" by building resilience and adaptability in our people and society. Our sustainable IT strategy is decomposed into three workstreams: sustainability in IT, sustainability by IT, and IT for society.



#### Short term (6-12 months)

#### Mid term (12-36 months)

#### Data center and cloud:

- Assess servers running in high-carbon intensity regions
- Start migrating servers to low-carbon intensity cloud or PUE efficient data centers regions **Application Portfolio Management:**

#### Conduct APM assessment

- Sustainable Software Development:
- Introduce guidelines and frameworks • Start measuring carbon intensity on a subset of
- applications Circular IT hardware:

#### · Assess the environmental impact on existing IT

٨

E

.⊑

Sustainability

۳.

E

b V

Sustainability

.

- assets Prolong IT hardware life cycle on key IT asset classes (computers, smartphones, etc)
- Initiate IT asset disposition (ITAD)

#### Efficient energy management:

• Start measuring and monitoring energy on IT assets

#### Take action on high-impact areas

- Vendor mgt. and IT procurement · Make your sustainability intent known to your vendo
- Create IT vendor questionnaire to start
- collecting environmental and social data for products and services Develop IT sustainability requirements

#### Data center and cloud:

- Complete migration of servers Explore AI & ML to optimize energy efficiency and resource utilization
- Leverage heat recovery techniques
- Application Portfolio Management:
- Initiate application rationalization process
- Sustainable Software Development: Start measuring carbon intensity on a subset
- of applications Rearchitect energy inefficient and resource intense applications

#### Circular IT hardware:

- Global rollout and industrialization ITAD ٠
- Explore green leasing
- Introduce eco-friendly, modular, and energy-
- efficient IT hardware
- Efficient energy management:
- Rollout global policies on energy management Explore carbon-aware patching and updates
- for a subset of IT asset categories Vendor mgt. and IT procurement:
- Automate collection of IT vendor environmental and social data
- Assess IT vendor sustainability performance -Introduce new vendors and divest as needed
- Include IT sustainability requirements in major RFXs

#### Long term (36 months - )

#### Data center and cloud:

- Explore emerging data center and cloud technologies
- Application Portfolio Management:
- Finalize application rationalization

#### Reassess application portfolio (as needed)

- Sustainable Software Development:
- Measure carbon intensity on all applications with frequent changes
- Continuously improve sustainable software development practices
- Circular IT hardware:

requirement

Continuously improve circular IT hardware management practices

#### Efficient energy management:

- Continuously remove and replace energy efficient IT hardware as they become end-ofuse
- Carbon-aware patching and updates for all IT assets

### Vendor mgt. and IT procurement:

Include IT sustainability requirements in all RFXs Continuously upgrade IT sustainability

Short term (6-12 months)

#### GHG emission visibility & reporting:

- Data acquisition for Scope 1 and Scope 2
- Establish initial Scope 1 and Scope 2 GHG
- emission baseline
- Identify Scope 3 sources

#### Digital innovation and technology:

Explore exponential technologies to develop new products and services

#### Product as a service:

Business model innovation - Explore different alternatives to transform your products into services

#### Sustainable supply-chain:

- Conduct a life cycle assessment (LCA) of your existing and future product and service portfolio
- · Identify key areas to reduce environmental impact

#### Energy-efficient buildings:

- Start measuring and monitoring energy efficiency from offices, manufacturing plants or logistics centers
- Take action on high-impact areas (i.e. transition to low-carbon steel, marine freight over airline freight)

#### Hybrid-work:

- Implement a hybrid-work HR policy
- Upgrade your productivity, collaboration, and security suites to support working anytime from anywhere

## Mid term (12-36 months)

- GHG emission visibility & reporting: Establish complete measurement across Scope 1-3
- Automate data acquisition from both internal and external data sources
- Report to governance bodies as needed
- Digital innovation and technology:
- Solution design and prototype development . . Limited deployment of new products and
- solutions in the marketplace

#### Product as a service:

- Test commercial viability of product as a service offering
- Roll out a few test offerings in a specific market or customer segment/base. Do not be afraid to kill your darlings

#### Sustainable supply-chain:

- Redesign supply-chain delivery network to reduce environmental impact
- Implement or upgrade environmental product declaration to include LCA

#### Energy-efficient buildings:

Install Internet-of-Things (IoT) devices to improve energy efficiency in your locations Hybrid-work:

Redesign talent acquisition process Explore new technologies to improve hybrid-

#### Long term (36 months -)

GHG emission visibility & reporting: Industrialize GHG emission visibility and reporting

#### Digital innovation and technology:

Deployment of commercial products and services in the marketplace

#### Product as a service:

Deployment and rollout of commercial offerings at scale

#### Sustainable supply-chain:

Implement redesign of supply-chain delivery network

#### Energy-efficient buildings:

Hybrid-work:

work as needed

Explore AI/ML to automate building energy efficiency

culture in a hybrid-working mode

Explore different ways to preserve and build a

Continuously reassess and improve hybrid

#### Short term (6-12 months)

Organizational enablement:

Communicate sustainable IT strategy

Develop awareness campaigns and general and specific sustainability training

• Make it easy for employees to get involved

Assess existing male/female ratio across IT

Develop a Minorities in Tech (MIT) strategy to

Dream - Co-create innovative ideas as input to

If gender targets do not exist, set targets

Design a 2–3-years MIT trainee program

Sustainability hackathons:

Social responsibility programs:

· Establish IT asset donation program

• Establish social outreach program(s)

Minorities in tech:

organization

reach targets

hackathon event

#### Mid term (12-36 months)

#### Organizational enablement:

- . Run continuous awareness campaigns
- . Roll out training to the target audience
- Develop employee engagement through earth day, digital clean-up day, etc • •
- Make it easy for employees to make sustainable choices
- Social responsibility programs: Encourage employee engagement in social responsibility programs .
- .
- Employee time donation program
- Sustainability for youth program

#### Minorities in tech (MIT):

- Execute on MIT strategy
- Implement the first MIT trainee program
- Sustainability hackathons: Hack - Hackathon to hack solutions to ٠ identified challenges and dreams

Long term (36 months - )

#### Organizational enablement:

- Measure and monitor employee engagement and adjust as needed
- Continuously run awareness campaigns and Social responsibility programs:
- Continuously assess and reposition social responsibility programs as needed
- Minorities in tech:

.

- · Follow-up and adjust MIT strategy as needed Industrialize the MIT program and run a new class bi-annually or annually •
- Sustainability hackathons:
- Build Build and scale solutions for a sustainable future

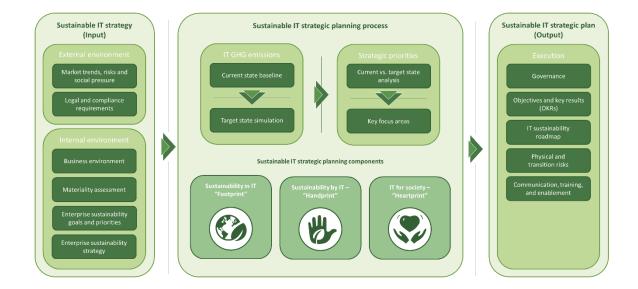
| Expected results                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A flexible technology platform to support the company's future growth running on low-carbon intensity                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Objectives                                                                                                                                                                                                                                                                                             | Activities                                                                                                                                                                                                                                                                                                                                                                                                                              | Activities                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| <ul> <li>Migrate existing server estate to a modern cloud computing platform</li> <li>Cloud computing enables IT systems to be scalable and elastic.</li> <li>Increase share of the virtualization</li> <li>Improve security and compliance</li> <li>Retire old legacy technology platforms</li> </ul> | <ul> <li>Identify all infrastructure in scope to be migrated</li> <li>Conduct analysis on viable migration options, limitations, risk, dependencies</li> <li>Create a migration plan</li> <li>Plan out-migration steps in detail</li> <li>Prepare a communication plan and communicate continuously with stakeholders</li> <li>Prepare a final cut-over plan</li> <li>Conduct migration(s)</li> <li>Verify migration results</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Interdependencies/Risks                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benefit                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| <ul> <li>Lack of cloud engineers</li> <li>Migration of legacy systems</li> </ul>                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Provide a customer experience that is always on with no downtime and no service windows</li> <li>Deliver IT services (software, platform, and infrastructure) to realize agility, scalability, reliability, resilience, cost optimization, and sustainability benefits.</li> <li>Decarbonize our digital infrastructure with a minimum of a factor of 20x</li> </ul> |  |  |  |
| Initiative Manager                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sponsor                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Digital infrastructure transformation manager                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chief Information Officer                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

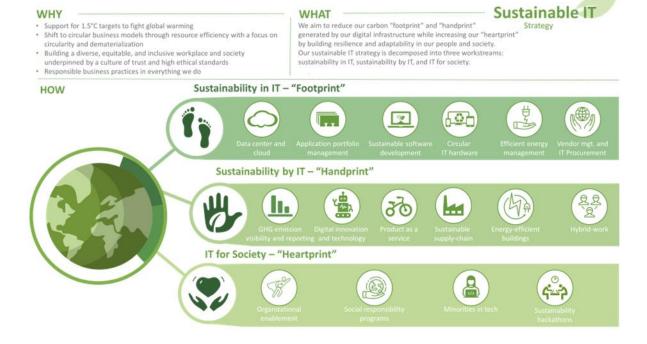
# IT for society

Ş

.

.


# Chapter 12: From Strategy to Execution – Lead with Purpose and Deliver Progress Quickly




| L                            | Responsible for<br>Sustainability<br>" <b>In</b> " the Cloud      | Sustainable IT Strategy IT Governance                 |                                                                               | ernance                      | IT Sourcing<br>& Procurement       |                                                             |
|------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|------------------------------------|-------------------------------------------------------------|
| stainable l'<br>Enterprise   |                                                                   | Enterprise Architecture Application Port<br>Managemen |                                                                               |                              | Information &<br>Cyber Security    |                                                             |
| Sustainable IT<br>Enterprise |                                                                   |                                                       | Software Application Data Design,<br>Design & Code Efficiency Usage & Storage |                              | IT Hardware<br>ifecycle Management | ıt<br>Rights                                                |
| Š                            |                                                                   | Cloud Brokering &<br>Orchestration                    | Platform D                                                                    | eployments L                 | Itilization & Scaling              | nagemer<br>Human                                            |
| (s)                          | Responsible for<br>Sustainability<br><b>"Of"</b> the Cloud        | Servers                                               | Storage                                                                       | Database                     | Security                           | lture   Change Management<br>Code of Conduct   Human Rights |
| Center &<br>Provider(s)      |                                                                   | Energy                                                | Wa                                                                            | ater                         | Circular Waste<br>Management       | ure   Cha<br>ode of Co                                      |
| Data Ce<br>Cloud Pr          |                                                                   | Tech Installation Connectivity                        |                                                                               | ectivity                     | Building                           |                                                             |
| C D                          |                                                                   |                                                       | La                                                                            | ind                          |                                    | People   Cu<br>G Reporting                                  |
| Utility<br>Provider(s)       | Responsible for<br>Sustainably<br>" <b>Powering"</b><br>the Cloud |                                                       | Utilit                                                                        | y Grid                       |                                    | ESG                                                         |
|                              |                                                                   | Renewable<br>Energy Sources                           | Transition<br>Energy Sources                                                  | Fossil Fuel<br>Energy Source | Cooling &<br>Heat waste            |                                                             |

|                                                  | Initial                                                                                                                  | Unstructured                                                                                                                                   | Defined                                                                                                                                                                    | Managed                                                                                                                                                                     | Optimized                                                                                                                                        |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Commitment                                       | <ul> <li>Not on the IT agenda</li> <li>No targets defined</li> </ul>                                                     | <ul> <li>Seen as an area of influence<br/>&amp; risk mitigation</li> <li>No clear Objectives and key<br/>results defined and agreed</li> </ul> | <ul> <li>Seen as an enabler</li> <li>Clear objectives and key<br/>results defined and agreed</li> </ul>                                                                    | <ul> <li>Seen as a key enabler</li> <li>Embedded as part of the<br/>overall IT delivery</li> <li>Connected to overall<br/>sustainability agenda</li> </ul>                  | <ul> <li>Seen as a competitive<br/>advantage</li> <li>Fully embedded as part of the<br/>overall IT delivery</li> </ul>                           |
| Governance                                       | No governance or reporting<br>structure exists                                                                           | No current baseline or target<br>state defined     Limited governance structure<br>exists                                                      | <ul> <li>Current baseline and target<br/>state defined, agreed &amp;<br/>tracked</li> <li>Governance structure defined<br/>and operational</li> </ul>                      | <ul> <li>Current baseline and target<br/>state defined, agreed and<br/>tracked in a consistent way.</li> <li>Governance structure well<br/>managed</li> </ul>               | <ul> <li>Gap closed between initial<br/>and target state baseline and<br/>new ambitions targets<br/>established</li> </ul>                       |
| Processes<br>& Tools                             | No processes defined     No tool support                                                                                 | Ad hoc processes     Limited or no tool support                                                                                                | Defined processes     Tool support fully operational                                                                                                                       | <ul> <li>Managed processes</li> <li>Mature and managed tools<br/>support</li> </ul>                                                                                         | Focus on continuous<br>improvement of processes &<br>tools                                                                                       |
| 요. 아이들 문 이 아이들 아이들 아이들 아이들 아이들 아이들 아이들 아이들 아이들 아 | <ul> <li>No executive support</li> <li>Lack of awareness of<br/>understanding</li> <li>No resources appointed</li> </ul> | <ul> <li>Limited executive support</li> <li>Awareness and<br/>understanding maturing</li> <li>Single or few resources<br/>appointed</li> </ul> | <ul> <li>Executive support exists</li> <li>Resources appointed and<br/>organization defined</li> <li>Mature wide organizational<br/>awareness and understanding</li> </ul> | <ul> <li>Strong Executive support</li> <li>Well managed organization</li> <li>Sustainability becoming<br/>embedded as part of the<br/>fabric of the organization</li> </ul> | <ul> <li>Fully engaged Executive<br/>support</li> <li>Sustainability fully embedded<br/>as part of the fabric of the<br/>organization</li> </ul> |
| Performance<br>Management                        | No metrics defined                                                                                                       | <ul> <li>No consistent metrics defined<br/>and applied</li> <li>Ad-hoc reporting</li> </ul>                                                    | <ul> <li>Consistent metrics defined,<br/>and agreed</li> <li>Manual reporting</li> </ul>                                                                                   | Mature metrics     Automated reporting                                                                                                                                      | Metrics continuously being<br>modified and refined                                                                                               |
|                                                  | Level 1                                                                                                                  | Level 2                                                                                                                                        | Level 3                                                                                                                                                                    | Level 4                                                                                                                                                                     | Level 5                                                                                                                                          |

| Introduction Parameters and assumptions | Set up the IT asse<br>emission table registr | > | Multi-year<br>simulation | Summary |  |
|-----------------------------------------|----------------------------------------------|---|--------------------------|---------|--|
|-----------------------------------------|----------------------------------------------|---|--------------------------|---------|--|



