
23
Alternative Blockchains

Introduction
This is an introduction to alternative blockchain solutions. With the success of Bitcoin and the sub-
sequent realization of the potential of blockchain technology, something of a Cambrian explosion 
happened in the tech world, which resulted in the development of various blockchain protocols, 
applications, and platforms. Some projects did not gain much traction, but many have succeeded in 
securing a stable place in this space.

We will explore:

• Kadena
• EOS
• Tezos
• Solana
• Ripple 
• Stellar
• MaidSafe
• Other platforms

Let’s start with Kadena.

Kadena
Kadena is a blockchain that has successfully addressed scalability and privacy issues in blockchain 
systems. A new Turing-incomplete language, called Pact, has also been introduced with Kadena that 
allows the development of smart contracts. A key innovation in Kadena is its scalable BFT consensus 
algorithm, which has the potential to scale to thousands of nodes without performance degradation.



Alternative Blockchains716

Scalable BFT is based on the original Raft algorithm and is a successor of Tangaroa and Juno. Tanga-
roa, which is the name given to an implementation of Raft with BFT, was developed to address the 
availability and safety issues that arose from the behavior of Byzantine nodes in the Raft algorithm, 
and Juno was a fork of Tangaroa. Both Tangaroa and Juno have a fundamental limitation—they cannot 
scale. As such, Juno and Tangaroa could not gain much traction. Tangaroa could scale up to 50 nodes 
with a processing speed of around 5,000 transactions per second, but it was only a Proof of Concept 
(PoC) and later it was discovered that it had some safety and liveness issues. Blockchains have the 
more desirable property of maintaining high performance as the number of nodes increases, but the 
aforementioned proposals lack this feature. Kadena solves these issues with its proprietary scalable 
BFT algorithm, which, according to the official documentation on Kadena, scales up to thousands of 
nodes without any performance degradation.

Moreover, confidentiality is another significant aspect of Kadena, and it enables the privacy of trans-
actions on the blockchain. This security service is achieved by using a combination of key rotation, 
symmetric on-chain encryption, incremental hashing, and the Double Ratchet protocol:

• Key rotation is used as a standard mechanism to ensure the security of the private blockchain. 
It is used as a best practice to thwart any attacks if the keys have been compromised by pe-
riodically changing the encryption keys. There is native support for key rotation in the Pact 
smart contract language.

• Symmetric on-chain encryption allows the encryption of transaction data on the blockchain. 
These transactions can be automatically decrypted by the participants of a particular private 
transaction.

• Incremental hash functions are useful in situations where, if a message that was previously 
hashed changes slightly into a new message, then instead of recomputing a new hash from 
scratch again, the hash generated originally for the message is used to generate a new hash. 
This method is faster than generating a new hash altogether for the new message.

• The Double Ratchet protocol is used to provide key management and encryption functions.

The scalable BFT consensus protocol ensures that adequate replication and consensus have been 
achieved before smart contract execution. The consensus is achieved with the following process, 
which is how a transaction originates and flows in the network:

1. First, a new transaction is signed by the user and broadcast over the blockchain network, which 
is picked up by a leader node that adds it to its immutable log. At this point, an incremental 
hash is also calculated for the log. An incremental hash is a type of hash function that allows 
the computation of hash messages in the scenario where if a previous original message that is 
already hashed is slightly changed, then the new hash message is computed from the already 
existing hash. This scheme is quicker and less resource-intensive compared to a conventional 
hash function, where an altogether new hash message is required to be generated even if the 
original message has only changed very slightly.

2. Once the transaction is written to the log by the leader node, it signs the replication and in-
cremental hash and broadcasts it to other nodes.



Chapter 23 717

3. Other nodes, after receiving the transaction, verify the signature of the leader node, add the 
transaction into their own logs, and broadcast their own calculated incremental hashes (quo-
rum proofs) to other nodes. Finally, the transaction is committed to the ledger permanently 
after an adequate number of proofs are received from other nodes. As the scalable BFT is 
deterministic, the transactions are not rolled back once committed. Each node will commit 
only if it sees that a majority of clusters are in agreement and evidence of the agreement is 
available. Otherwise, if this evidence of agreement is missing, the nodes will not do anything.

A simplified version of this process is shown in the following diagram, where the leader node is re-
cording the new transactions and then replicating them to the follower nodes:

Figure 22.1: Consensus mechanism in Kadena

Once consensus is achieved, a smart contract execution can start and takes a number of steps, as 
follows:

1. The signature of the message is verified.
2. The Pact smart contract layer takes over.
3. The Pact code is compiled.
4. The transaction is initiated and executes any business logic embedded within the smart con-

tract. In case of any failures, an immediate rollback is initiated that reverts that state back to 
what it was before the execution started.

5. Finally, the transaction completes, and the relevant logs are updated.

Pact has been open sourced by Kadena and is available for download at http://kadena.
io/pact/downloads.html.



Alternative Blockchains718

Pact
Pact can be downloaded as a standalone binary that provides a REPL for the language. An example is 
shown here, where Pact is run by issuing the pact command in the Linux console:

Figure 22.2: Pact REPL, showing sample commands and error output

A smart contract in the Pact language is usually composed of three sections: keysets, modules, and 
tables. These sections are described here:

• Keysets: This section defines relevant authorization schemes for modules and tables.
• Modules: This section defines the smart contract code encompassing the business logic in 

the form of functions and pacts. Pacts within modules are composed of multiple steps and 
are executed sequentially.

• Tables: This section is an access-controlled construct defined within modules. Only adminis-
trators defined in the admin keyset have direct access to this table. Code within the module is 
granted full access, by default, to the tables.

Pact also allows several execution modes. These modes include contract definition, transaction exe-
cution, and querying. These execution modes are described here:

• Contract definition: This mode allows a contract to be created on the blockchain via a single 
transaction message.

• Transaction execution: This mode entails the execution of modules of smart contract code 
that represent business logic.

• Querying: This mode is concerned with simply probing the contract for data and is executed 
locally on the nodes for performance reasons. Pact uses Lisp-like syntax and represents in 
the code exactly what will be executed on the blockchain, as it is stored on the blockchain in 
human-readable format. This is in contrast to Ethereum’s EVM, which compiles into bytecode 
for execution, which makes it difficult to verify what code is in execution on the blockchain. 
Moreover, it is Turing incomplete, supports immutable variables, and does not allow null 
values, which improves the overall safety of the transaction code execution.



Chapter 23 719

It is not possible to cover the complete syntax and functions of Pact in this short introduction; however, 
a small example is shown here that shows the general structure of a smart contract written in Pact. 
This example shows a simple addition module that defines a function named addition that takes three 
parameters. When the code is executed, it adds all three values and displays the result:

When the code is run, it produces the output shown as follows:

Figure 22.4: The output of the code

As shown in the preceding example, the execution output exactly matches the code layout and structure, 
which allows greater transparency and limits the possibility of malicious code execution.

Kadena is a new class of blockchain that introduces the novel concept of pervasive determinism, 
where, in addition to standard public/private-key-based data origin security, an additional layer of 
fully deterministic consensus is also provided. It provides cryptographic security at all layers of the 
blockchain, including transactions and the consensus layer.

The following example has been developed using the online Pact compiler available at 
https://pact.kadena.io/.

Figure 22.3: Pact example

Documentation and source code for Pact can be found at https://github.com/kadena-
io/pact.



Alternative Blockchains720

Kadena also introduced a public blockchain in January 2018, which is another leap forward in build-
ing blockchains with massive throughput. The novel idea in this proposal is to build a Proof of Work 
(PoW) parallel chain architecture. This scheme works by combining individually mined chains on 
peers into a single network. The result is massive throughput capable of processing more than 10,000 
transactions per second.

In the next section, we introduce EOS, which aims to be a scalable blockchain and has introduced 
several innovative ideas.

EOS
The EOSIO, also known as EOS, blockchain was developed by block.one (https://block.one/) in the 
C++ programming language. It was first released on January 31, 2018. It has been built for both public 
and private blockchain use cases.

A new concept of system resources has been introduced with EOS. Just like the usual concept of 
computing resources in a computer, such as RAM, CPU, and Networking (NET), the EOS blockchain 
uses the same concept of resources to manage the blockchain. The amount of resources allocated is 
directly proportional to the amount of EOS stake—meaning the higher the stake, the more resources 
you get. This resource model protects against abuse because in order to game the system, an attacker 
would need a large amount of stake.

Resources
During the process of staking, users (stakers) specify how much of the stake is going to be allocated 
for CPU and NET. RAM is not allocated as a result of staking but is required to be bought separately 
from the RAM market.

We describe these resources one by one in the next sections.

CPU
CPU is required for executing transactions. It is the processing power of an account. It represents the 
processing time of an action in microseconds. It is referred to as CPU bandwidth.

RAM
This is used for data storage on the network. It is required by nodes to store account data in the block-
chain state. It is required to be purchased by developers to run applications. Data such as the name 
of the account, relevant metadata, permissions, token balance, and public keys is stored in RAM. It 
can be thought of as hard disk space. RAM can also be traded with other accounts for a fee if it’s no 
longer required by an account.

Various whitepapers on Kadena are available here: https://docs.kadena.io/basics/
whitepapers/overview.



Chapter 23 721

NET
NET is the network bandwidth measured in bytes. This is the amount of bandwidth a user is allowed 
to use.

Components
EOS consists of a number of components, which we’ll describe in the following sections.

nodeos
This is the core element that runs as a daemon on every EOSIO blockchain node. It runs a blockchain 
node, which can also be configured with plugins for additional functionality.

It handles the blockchain persistence layer, P2P networking, and smart contract code scheduling.

cleos
This is the primary command-line tool that is used to interact with nodeos. Interaction is done via 
REST APIs exposed by nodeos. cleos is also used to test and deploy smart contracts.

keosd
This is the key management daemon responsible for storing private keys and signing messages.

We can visualize this architecture in the following diagram:

Figure 22.5: EOS high-level architecture

CPU and NET combined are also commonly referred to as bandwidth.



Alternative Blockchains722

Other components of the EOS blockchain include accounts, transactions and actions, and wallets, 
which we will introduce next.

Accounts
Accounts in EOS are represented by strings of 12 characters. They act as identifiers on the blockchain. 
An EOS account also has permissions associated with it that define which actions are allowed to be 
performed by the account, and are required for actions such as staking, voting, and sending or re-
ceiving funds. Accounts are controlled by cryptographic key pairs (a pair of private and public keys). 
An EOS account name can only contain a-z letters in lowercase, a period (.), and numbers 1-5, and it 
must start with a letter.

Transactions, actions, and blocks
A transaction can be defined as an atomic change to the blockchain, usually as a result of smart contract 
execution. Transactions make up the bodies of the blocks. A block is composed of a block header and 
transactions. One or more actions make up a transaction. An action can be described as a suggested 
change in the blockchain or a call to a smart contract. There are three main types of actions in EOSIO, 
namely, calling actions, inline actions, and deferred actions. Calling actions are calls made by users to a 
contract, inline actions are calls made between different contracts or within the same contract, and 
deferred actions represent deferred transactions.

Wallet
A wallet is an encrypted file created by a client such as cleos. It manages the private keys and trans-
action signing. A wallet file is unlocked (decrypted) by using a master key. It can be in a locked or 
unlocked state.

EOS supports the development of smart contracts and provides libraries for developers to use. We 
explore them in the next section.

Developing with EOS
Development on EOS is made possible by several tools and libraries, which we will describe in this 
section.

EOSIO.CDT
This is the contract development toolkit. It is a set of tools that enables smart contract development 
on EOS. It is a toolchain for creating Web Assembly (Wasm). It contains several elements, such as:

• eosio-cpp: Used for compiling contract source code
• eos-ld: The web assembly linker for smart contracts
• eosio-init: Generates the skeleton code and directory structure for a smart contract
• eos-abidiff: Compares two ABI files and outputs the difference



Chapter 23 723

Tezos
Tezos is a generic self-amending cryptographic ledger, which means that it not only allows decen-
tralized consensus on the state of the blockchain but also allows consensus on how the protocol and 
nodes are evolved over time. Tezos has been developed to address limitations in the Bitcoin protocol 
(and other similar blockchains) such as contentious issues arising from hard forks, costs, and mining 
power centralization due to PoW, limited scripting ability, and security issues. It has been developed 
in a purely functional language called OCaml:

• The whitepaper is available at https://tezos.com/whitepaper.pdf.
• The position paper is available at https://tezos.com/position-paper.pdf.
• The source code is available at https://gitlab.com/tezos/tezos.

The architecture of a Tezos distributed ledger is divided into three layers: the network layer, the 
consensus layer, and the transaction layer. This decomposition allows the protocol to evolve in a 
decentralized fashion. For this purpose, a generic network shell is implemented in Tezos that is re-
sponsible for maintaining the blockchain, which is represented by a combination of the consensus 
and transaction layers. This shell provides an interface layer between the network and the protocol.

The concept of a seed protocol has also been introduced, which is used as a mechanism to allow 
stakeholders on the network to approve any changes to the protocol.

This seed protocol is responsible for defining procedures for amendments in the blockchain and even 
the amendment protocol itself. Originally, the reward mechanism in Tezos was based on a Proof of 
Stake (PoS)-based algorithm called Liquid PoS, hence there was no PoW-style mining requirement. 
However, the protocol was still in the Nakamoto style, meaning probabilistic finality. This resulted in 
more efficiency and lower energy consumption and unlike PoS, in Liquid PoS, the number of valida-
tors was not fixed, which allowed anyone to produce blocks based on the amount of stake they have. 
However, as the protocol evolved, so did the consensus algorithm. The latest consensus protocol used 
by Tezos is Tenderbake. It is a classical BFT-style algorithm based on the Tendermint protocol. This 
means that the finality is now deterministic, and a block is finalized under a minute as compared to 
probabilistic finality, which took around six minutes in the previously implemented proof of stake 
protocol called Emmy+.

A domain-specific language called Michelson has been developed in Tezos for writing smart contracts, 
which is a stack-based Turing-complete language. Smart contracts in Tezos are formally verifiable, 
which allows the code to be mathematically proven for its correctness.

Tezos completed crowdfunding via an ICO of 232 million USD in July 2017. Their public network was 
released in June 2018.

The Tezos blockchain starts from a seed protocol, in contrast with a traditional blockchain 
that starts from a genesis block.



Alternative Blockchains724

Tezos can be distinguished as a platform that is not only a smart contract platform like Ethereum, but 
also has a built-in governance mechanism and supports the formal verification of contract code. These 
two additional properties make it a different and arguably better protocol than existing traditional 
blockchain networks.

Due to the governance mechanism, there is no central control by either developers or miners on the 
blockchain, and formal verification allows the development of secure and formally verified smart 
contracts. By allowing formal verification, bugs can be avoided, which leads to better security. Tezos’ 
cryptocurrency is called tezzies and is symbolized by the letters XTZ.

Now let’s have a look at the Tezos architecture, and see the different elements that make up Tezos and 
how they fit together.

Architecture
Before discussing the components of a Tezos network, let’s first see what a Tezos network is.

Network
The network is the underlying blockchain network using the Peer-to-Peer (P2P) protocol where all 
Tezos nodes exist and communicate with each other.

There are two main test networks available for Tezos called Limanet and Mumbainet. More details 
are available here: https://tezos.gitlab.io/introduction/test_networks.html.

Tezos’ mainnet is the main production network used by Tezos. More information and a list of block 
explorers for Tezos are available here: https://wiki.tezos.com/build/clients/block-explorers.

The Tezos network consists of several components, which we’ll describe in the following sections.

Client
The client is a basic wallet and acts as a primary interface to the node. Clients or other third-party 
applications communicate with the node via RPC, which uses JSON format and the HTTP protocol.

Node
A node can be defined as a peer on the Tezos P2P network. It is an entity that is responsible for con-
necting with the Tezos blockchain. A node has a local state and consists of a shell and the protocol. The 
shell consists of a P2P network layer and a validator. The P2P layer is responsible for communicating 
with other nodes via the gossip protocol. The economic protocol is the self-amending element that 
is responsible for different operations, such as transaction interpretation.

Tezos code is available at https://gitlab.com/tezos/tezos.



Chapter 23 725

A node propagates blocks and operations such as transactions, accusation, activation, delegation, 
endorsement, and origination. Let’s look at each of these terms:

• A transaction in Tezos can be defined as a transfer of funds between two accounts, or a smart 
contract execution.

• Accusation is the process whereby a node can accuse another node of deviating from the 
protocol or, in other words, abusing or misusing the network, such as injecting incompatible 
blocks into the blockchain.

• Activation is the process of claiming the tokens from the ICO sale and activating the address 
on the blockchain.

• Delegation is the mechanism by which a token holder delegates the rights of baking (baking 
is Tezos’ term for validating transactions and blocks) to another party.

• Endorsing is a mechanism whereby a baker is asked to validate and witness a block to check 
that it has been created correctly and is a valid block. Endorsers are also rewarded with tezzies 
for their activity.

• Origination is the action (or operation) of creating a new smart contract.

All the aforementioned operations are actions that result in a state change in the blockchain.

Other than the peer nodes, there are other daemons, which can be endorsers, bakers, or accusers. 
We’ll discuss these individually, as follows.

Endorser
This is a node on the Tezos blockchain network that has the endorsement right, which results in in-
creasing the endorsed block’s score. A block’s score is a measure of its weight or fitness to be consid-
ered the head of the blockchain. It can be defined as a unit of comparing contexts. Context is simply 
defined as the state of the blockchain. If there are conflicting blocks, the context’s score is measured, 
and the highest-scoring (or fittest) block becomes the head of the blockchain.

In relation to the context and operations, there is another concept called the economic protocol, which 
has been introduced in Tezos. This is defined as the application that runs on top of the blockchain and 
defines its state (context) and actions that result in state changes (operations).

Baker
A node is a baker when its role is to add blocks in the Tezos blockchain. During the baking process, a 
baker picks up transactions accumulated in its memory pool that have been propagated on the network.

A set of consecutive blocks is called a cycle. A cycle represents blocks from a certain height to another 
height and is used as a perception of time on the blockchain. Another relevant concept is called a 
roll, which means an amount of tezzies as a unit, to establish a delegate’s rights of baking in a cycle.

Baking in Tezos is the equivalent of mining in Bitcoin. In PoW blockchains such as Bitcoin or Ethereum, 
the right to add a new block to the blockchain is won by solving the PoW problem. In Tezos, this right 
is assigned randomly to a baker who owns tezzies. One key point to note is that it is not the baker that 
is selected randomly; it is the token that a baker holds. 



Alternative Blockchains726

The tokens can also be delegated to someone else, and if a token out of those delegated tokens is ran-
domly chosen for baking, then the delegated party will win the right to add a new block.

A baker is required to create a safety deposit if chosen as the next block creator, which ensures the 
honesty of the baker. If a baker tries to be dishonest, it would be punished and its safety deposit would 
be lost. If the baker honestly creates a new block that is accepted, it obtains tezzies as a reward.

Accuser
An accuser node provides evidence to show that the accused node has attempted to perform some 
illegal activity. In return for this effort, the accuser is rewarded with some funds from the accused 
node’s baking deposit. Illegal activities primarily include operations where a baker signs two differ-
ent blocks at the same block height or when more than one endorsement operation is injected by an 
endorser within the same baking cycle.

Like any blockchain network, an account is required to perform transactions on a blockchain network. 
We introduce accounts in Tezos next.

Accounts
There are two types of accounts within Tezos, namely implicit accounts, which are identified by the 
prefix tz1, and originated accounts, which are identified by the kt1 prefix.

Implicit accounts are created by using a public and private key pair. They have an account owner rep-
resenting the owner of the private key and the account balance. The public address for these accounts 
is identified by the tz{1,2,3} prefix, which is derived from the public key.

The other type of account is for smart contracts and is called an originated account. These are identified 
by the prefix kt1. They are created by the origination operation from another contract. Originated 
accounts cannot act as a baker and can be spendable or delegatable. They are managed via an implicit 
account or another contract.

These accounts have four fields, namely, manager, amount, delegatable, and delegate. Manager 
contains the private key for the account. Amount, as the name suggests, holds the number of tezzies 
for this account. The delegatable field describes whether this account is capable of delegating baking 
operations or not. Finally, the delegate field identifies the delegated account for baking.

The high-level architecture of Tezos can be visualized as follows:

A list of bakers can be found here: https://mytezosbaker.com.



Chapter 23 727

Figure 22.6: Tezos high-level architecture

The Tezos ecosystem also has two scalability solutions, including optimistic rollups and sidechains. 
Optimistic rollups include a preliminary solution for transaction scalability called Transaction Optimis-
tic Rollups (TORU) and Smart Contract Optimistic Rollups (SCORU), which will allow the processing 
of smart contracts within the rollup using Web Assembly Virtual Machine (WASMVM). Rollups use a 
new type of consensus called Tenderbake, which is based on Tendermint. Sidechain-based solutions 
include the DEKU chain (DEKU-C), which is a Proof of Authority (PoA) public chain using a variant of 
the Tendermint consensus protocol. DEKU-C is based on DEKU Parametric (DEKU-P), which allows 
you to create custom permissions on private chains.

Now that we understand the theoretical foundation, let’s see what options are available for smart 
contract development in Tezos.

Development
Smart contracts in Tezos can be readily formally verified, thus increasing the reliability and security 
of the contracts. A domain-specific language called Michelson has been developed for writing smart 
contracts for Tezos. In contrast with Ethereum’s Solidity, which needs to be compiled into bytecode 
first for it to be executed on the VM, Michelson can directly run normal, human-readable code on the 
Tezos VM. This approach helps with the formal verification of the smart contract code. Michelson is 
a stack-based and strongly typed language, which allows smart contracts written using Michelson to 
be formally verified.

Strongly typed languages have strictly defined restrictions imposed by the compiler of the 
language, which enforces certain rules around the data types. Usually, these are restric-
tions on the automatic conversion of one data type to another, and variables are required 
to have a well-defined type. If these rules are violated, then exceptions are usually raised 
at compile time.



Alternative Blockchains728

Smart contracts are identified by addresses starting with KT1. Smart contracts are created with an 
operation called origination, meaning contract registration on the blockchain network.

Some languages other than Michelson that have been developed for smart contract development for 
Tezos are as follows:

• LIGO: This is an easy-to-use smart contract language for Tezos. There are three flavors available 
for LIGO, namely PascaLIGO, CameLIGO, and ReasonLIGO. More information can be found 
at https://ligolang.org.

• Fi: A high-level language for Michelson. More information is available at https://fi-code.com.
• Liquidity: A high-level typed smart contract language. More information is available at https://

www.liquidity-lang.org.

There are also various libraries that can be used to integrate Tezos with an application. A selection of 
these libraries is as follows:

• ConseilJS: https://cryptonomic.github.io/ConseilJS/#/
• Taquito: https://tezostaquito.io
• TezBridge: https://docs.tezbridge.com
• eztz: https://github.com/TezTech/eztz

Wallets
There are quite a few wallets available for Tezos. Software wallets include Galleon (https://
cryptonomic.tech/galleon.html), AirGap (https://airgap.it/), Kukai (https://kukai.app/), and 
ZenGo (https://zengo.com/). Hardware wallets include Ledger (https://www.ledger.com/) and 
Trezor (https://trezor.io/).

Moreover, the Tezos client Command-Line Interface (CLI) can also be used to support basic wallet 
functionality.

This completes our basic introduction to Tezos. It is a vast subject, and these few pages cannot do 
justice to the vast and complex Tezos ecosystem. However, this basic introduction should serve as a 
solid foundation to explore further.

In the next section, we discuss Ripple, which offers a blockchain platform for global payments.

Ripple
Introduced in 2012, Ripple is a currency exchange and real-time gross settlement system.

In Ripple, the payments are settled without any waiting, as opposed to traditional settlement networks, 
where settlement can take days.

Tezos’ official documentation is available at https://tezos.gitlab.io.



Chapter 23 729

It has a native currency called Ripples (XRP), but it also supports non-XRP payments. This system is 
considered similar to a traditional money transfer mechanism known as Hawala. This system works 
by making use of agents who take money and a password from the sender, then contact the payee’s 
agent and instruct them to release funds to the person who can provide the password. The payee then 
contacts the local agent, tells them the password, and collects the funds. An analogy to the agent is a 
gateway in Ripple. This is just a very simple analogy; the actual protocol is rather complex, but it is 
the same in principle.

The Ripple network is composed of various nodes that can perform different functions based on their 
type:

• User nodes: These nodes are used in payment transactions and can send or receive payments.
• Validator nodes: These nodes participate in the consensus mechanism. Each server maintains 

a set of unique nodes, which it needs to query while achieving consensus. Nodes in the Unique 
Node List (UNL) are trusted by the server involved in the consensus mechanism, which will 
accept votes only from this list of unique nodes.

Ripple is sometimes not considered a truly decentralized network as there are network operators 
and regulators involved. However, it can be considered decentralized due to the fact that anyone can 
become part of the network by running a validator node. Moreover, the consensus process is also 
decentralized because any proposed changes to the ledger have to be decided by following a scheme 
of super majority voting. However, this is a hot topic among researchers and enthusiasts and there 
are arguments against and in favor of each school of thought. There are some discussions online 
that readers can refer to for further exploration of these ideas. You can find a couple of these online 
discussions at the following addresses:

• https://financefeeds.com/sec-claims-xrp-is-a-security-due-to-centralized-nature/

• https://thenextweb.com/hardfork/2018/02/06/ripple-report-bitmex-centralized/

• https://cryptoslate.com/vitalik-buterin-says-xrp-is-completely-centralized-draws-
ripple-ctos-reaction/

Ripple maintains a globally distributed ledger of all transactions that are governed by a novel low-la-
tency consensus algorithm called the Ripple Protocol Consensus Algorithm (RPCA). The consensus 
process works by achieving agreement on the state of an open ledger containing transactions by seeking 
verification and acceptance from validating servers in an iterative manner until an adequate number 
of votes is collected. Once enough votes are received (a super majority, initially 50% and gradually 
increasing with each iteration up to at least 80%), the changes are validated and the ledger is closed. 
At this point, an alert is sent to the whole network indicating that the ledger is closed.

The original research paper for RPCA is available at https://ripple.com/files/ripple_
consensus_whitepaper.pdf.

Another updated version is available at https://arxiv.org/ pdf/1802.07242.pdf.



Alternative Blockchains730

In summary, the consensus protocol is a three-phase process:

1. Collection phase: In this phase, validating nodes gather all transactions broadcast on the net-
work by account owners and validate them. Transactions, once they are accepted, are called 
candidate transactions and can be accepted or rejected based on the validation criteria.

2. Consensus phase: After the collection phase, the consensus process starts, and after achieving 
it, the ledger is closed.

3. Ledger closing phase: This process runs asynchronously every few seconds in rounds, and 
when it completes, the ledger is opened and closed (updated) accordingly:

Figure 22.7: Ripple consensus protocol phases

In a Ripple network, there are a number of components that work together in order to achieve con-
sensus and form a payment network. These components are discussed individually here:

• Server: This component serves as a participant in the consensus protocol. Ripple server soft-
ware is required in order to be able to participate in the consensus protocol.

• Ledger: This is the main record of balances of all accounts on the network. A ledger contains 
various elements, such as the ledger number, account settings, transactions, timestamp, and 
a flag that indicates the validity of the ledger.

• Last closed ledger: A ledger is closed once consensus is achieved by validating nodes.
• Open ledger: This is a ledger that has not been validated yet and no consensus has been reached 

about its state. Each node has its own open ledger, which contains proposed transactions.
• Unique node list: This is a list of unique trusted nodes that a validating server uses in order to 

seek votes and subsequent consensus.
• Proposer: As the name suggests, this component proposes new transactions to be included 

in the consensus process. It is usually a subset of nodes (UNL defined in the previous point) 
that can propose transactions to the validating server.



Chapter 23 731

Like any other blockchain, a fundamental activity in Ripple is the transaction. We introduce the design 
and architecture of transactions in Ripple in the next section.

Transactions
Transactions are created by the network users in order to update the ledger. A transaction is expected 
to be digitally signed and valid in order for it to be considered as a candidate in the consensus process. 
Each transaction costs a small amount of XRP, which serves as a protection mechanism against Denial 
of Service (DoS) attacks caused by spamming.

There are different types of transactions in the Ripple network. A single field within the Ripple trans-
action data structure called TransactionType is used to represent the type of the transaction. Trans-
actions are executed by using a four-step process:

1. First, transactions are prepared whereby an unsigned transaction is created by following the 
standards.

2. The second step is signing, where the transaction is digitally signed by the sender to authorize it.
3. After this, the actual submission to the network occurs via the connected server.
4. Finally, the verification is performed to ensure that the transaction is validated successfully.

A transaction in Ripple is composed of various fields that are common to all transaction types. These 
fields are listed as follows with a description:

• Account: This is the address of the initiator of the transaction.
• AccountTxnID: This is an optional field that contains the hash of another transaction. It is used 

to chain the transactions together.
• Fee: This is the amount of XRP.
• Flags: This is an optional field specifying the flags for the transaction.
• LastLedgerSequence: This is the highest sequence number of the ledger in which the trans-

action can appear.
• Memos: This represents optional arbitrary information.
• SigningPubKey: This represents the public key.
• Signers: This represents signers in a multisig transaction.
• SourceTag: This represents either the sender of, or the reason for, the transaction.
• TxnSignature: This is the verification digital signature for the transaction.

Roughly, transactions can be categorized into three types, namely payments-related, order-related, 
and account-and-security-related. These types and their unique fields are described in the following 
sections.

Payments-related
There are several fields in this category that result in certain actions. These fields are described as 
follows:

• Payment: This transaction is most commonly used and allows one user to send funds to another.



Alternative Blockchains732

• PaymentChannelClaim: This is used to claim XRP from a payment channel. A payment channel 
is a mechanism that allows recurring and unidirectional payments between parties. This can 
also be used to set the expiration time of the payment channel.

• PaymentChannelCreate: This transaction creates a new payment channel and adds XRP to it 
in drops. A single drop is equivalent to 0.000001 of an XRP.

• PaymentChannelFund: This transaction is used to add more funds to an existing channel. Sim-
ilar to the PaymentChannelClaim transaction, this can also be used to modify the expiration 
time of the payment channel.

Order-related
This type of transaction includes the following two fields:

• OfferCreate: This transaction represents a limit order, which represents an intent for the 
exchange of currency. It results in creating an offer node in the consensus ledger if it cannot 
be completely fulfilled.

• OfferCancel: This is used to remove a previously created offer node from the consensus ledger, 
indicating withdrawal of the order.

Account-and security-related
This type of transaction includes the fields listed as follows. Each field is responsible for performing 
a certain function:

• AccountSet: This transaction is used to modify the attributes of an account in the Ripple 
consensus ledger.

• SetRegularKey: This is used to change or set the transaction signing key for an account. An 
account is identified using a Base58 Ripple address derived from the account’s master public key.

• SignerListSet: This can be used to create a set of signers for use in multisignature transactions.
• TrustSet: This is used to create or modify a trust line between accounts.

Interledger
Original work on the Interledger protocol was started by Ryan Fugger in 2004. With the introduction 
of Bitcoin in 2009, this work generated even more interest, and since then many contributions have 
been made to this project.

A protocol for Interledger payments was invented by Stefan Thomas and Evan Schwartz from Ripple. 
The research paper is available at https://interledger.org/interledger.pdf.

Interledger is an open protocol suite for cross-ledger payments. It is composed of four layers: Applica-
tion, Transport, Interledger, and Ledger. Each layer is responsible for performing various functions 
under certain protocols. These functions and protocols are described in the following section.



Chapter 23 733

Application layer
Protocols running on this layer govern the key attributes of a payment transaction. Examples of 
application layer protocols include Simple Payment Setup Protocol (SPSP) and Open Web Payment 
Scheme (OWPS). SPSP is an Interledger protocol that allows secure payment across different ledgers 
by creating connectors between them. OWPS is another scheme that allows consumer payments 
across different networks.

Once the protocols on this layer have run successfully, protocols from the transport layer will be 
invoked in order to start the payment process.

Transport layer
This layer is responsible for managing transactions. Protocols such as Optimistic Transport Proto-
col (OTP), Universal Transport Protocol (UTP), and Atomic Transport Protocol (ATP) are available 
currently for this layer. OTP is the simplest protocol, which manages payment transfers without any 
escrow protection, whereas UTP provides escrow protection. ATP is the most advanced protocol, 
which not only provides an escrowed transfer mechanism but also makes use of trusted notaries to 
further secure transactions.

Interledger layer
This layer provides interoperability and routing services. This layer contains protocols such as In-
terledger Protocol (ILP), Interledger Quoting Protocol (ILQP), and Interledger Control Protocol (ILCP). 
The ILP packet provides the final target (destination) of the transaction in a transfer.

ILQP is used in making quote requests by the senders before the actual transfer. ILCP is used to ex-
change data related to routing information and payment errors between connectors on the payment 
network.

Ledger layer
This layer contains protocols that enable the communication and execution of payment transactions 
between connectors. Connectors are objects that implement the protocol for forwarding payments 
between different ledgers. The ledger layer can support various protocols such as Simple Ledger 
Protocol (SLP), various blockchain protocols, legacy protocols, and different proprietary protocols.

Ripple Connect consists of various plug-and-play modules that allow connectivity between ledgers 
by using the ILP.

The official website is https://interledger.org.

The RFCs of this protocol are available at https://github.com/interledger/rfcs.



Alternative Blockchains734

It enables the exchange of required data between parties before the transaction, visibility, fee manage-
ment, delivery confirmation, and secure communication using transport layer security. A third-party 
application can connect to the Ripple network via various connectors that forward payments between 
different ledgers.

All layers described in the preceding sections make up the architecture of the ILP. Overall, Ripple 
is a solution that targets the financial industry and makes real-time payments possible without any 
settlement risk.

In the next section, we’ll discuss another payment network called Stellar, which emerged about two 
years after the introduction of Ripple.

Stellar
Stellar is a payment network based on blockchain technology and a novel consensus model called 
Federated Byzantine Agreement (FBA). FBA works by creating quorums of trusted parties. Stellar 
Consensus Protocol (SCP) is an implementation of FBA.

Stellar Consensus Protocol
Some of the key issues identified in the Stellar white paper are the cost and complexity of the current 
financial infrastructure. This limitation warrants the need for a global financial network that address-
es these issues without compromising the integrity and security of the financial transaction. This 
requirement resulted in the invention of SCP, which is a demonstrably safe consensus mechanism.

SCP has four main properties, which are described here:

• Decentralized control: This allows participation by anyone without any central party.
• Low latency: This addresses the much-desired requirement of fast transaction processing.
• Flexible trust: This allows users to choose which parties they trust for a specific purpose.

Plug and play is a feature of software or electronic devices that allows them to work the 
first time they are used without requiring any configuration by the user.

As this is a very feature-rich platform, covering all aspects of it is not possible in this brief 
introduction. However, Ripple documentation is available at https://ripple.com/.

The original research paper for SCP is available at https://www.stellar.org/papers/
stellar-consensus-protocol.pdf.



Chapter 23 735

• Asymptotic security: This makes use of digital signatures and hash functions for providing 
the required level of security on the network.

The Stellar network allows the transfer and representation of the value of an asset by its native digital 
currency, called lumens, abbreviated as XLM. Lumens are consumed when a transaction is broadcast 
on the network, which also serves as a deterrent against DoS attacks.

At its core, the Stellar network maintains a distributed ledger that records every transaction and is 
replicated on each Stellar server (node). The consensus is achieved by verifying transactions between 
servers and updating the ledger with updates. The Stellar ledger can also act as a distributed exchange 
order book by allowing users to store their offers to buy or sell currencies.

The core software is available at https://github.com/stellar/stellar-core.

With this, we complete our introduction to Stellar. Next, we introduce Rootstock, which is a separate 
blockchain attached to the Bitcoin blockchain using a two-way peg and introduces smart contract 
functionality to the Bitcoin ecosystem.

Rootstock
Before discussing Rootstock (RSK) in detail, it’s important to define and introduce some concepts that 
are fundamental to its design. These concepts include two-way pegging, sidechains, and drivechains.

Two-way pegging
This is a mechanism by which a value (coins) can be transferred between one blockchain and another. 
There is no real transfer of coins between chains. The idea revolves around the concept of locking the 
same amount and value of coins in a Bitcoin blockchain (the main chain) and unlocking the equivalent 
number of tokens in the secondary chain.

Bearing this definition in mind, sidechains will be defined next.

Sidechain
This is a blockchain that runs in parallel with a main blockchain and allows the transfer of values 
between them. This means that tokens from one blockchain can be used in the sidechain and vice 
versa. This is also called a pegged sidechain because it supports two-way pegged assets.

The concept of the sidechain was originally developed by Blockstream.

Drivechain
This is a relatively new concept, where control of unlocking the locked bitcoins (in the main chain) is 
given to the miners who can vote on when to unlock them. This is in contrast with sidechains, where 
consensus is validated through a simple payment verification mechanism in order to transfer the 
coins back to the main chain.

Blockstream’s website is located at https:// blockstream.com.



Alternative Blockchains736

Now that we understand the basic ideas behind these core concepts, let’s discuss RSK in more detail.

RSK is a smart contract platform that has a two-way peg into the Bitcoin blockchain. The core idea is 
to increase the scalability and performance of the Bitcoin system and enable it to work with smart 
contracts. RSK runs a Turing-complete deterministic VM called the Rootstock Virtual Machine (RVM).

It is also compatible with the EVM and allows Solidity-compiled contracts to run on RSK. Smart con-
tracts can also run under the time-tested security of Bitcoin. The RSK blockchain works by merge-min-
ing (merge-mining is the process of mining more than one blockchain at once) with Bitcoin. This allows 
RSK to achieve the same level of security as Bitcoin. This is especially true for preventing double-spends 
and achieving settlement finality. It allows scalability, up to 400 transactions per second due to faster 
block times and other design considerations.

RSK has released a mainnet called Bamboo, which is currently in beta.

In the next section, we introduce some projects related to decentralized storage.

Solana
Solana is a layer 1 blockchain platform that was launched in 2018 with a focus on speed, security, 
scalability, and decentralization. It has smart contract support and is currently in the beta stage with 
growing popularity. Although it is an operational network with some production systems, there are 
still some technical issues being addressed. The ledger uses a verifiable delay function where time is 
treated as data and supports millions of nodes with the help of GPUs. The native token on the platform, 
the SOL coin, is used for governance and incentivization.

Solana’s main innovations include:

• Proof of History (PoH) for ordering events.
• The Tower BFT consensus algorithm for voting and fork selection.

For more details regarding drivechains, sidechains, and two-way peg designs, refer to 
the original research paper at https://docs.rsk.co/ Drivechains_Sidechains_and_
Hybrid_2-way_peg_Designs_R9.pdf.

The research paper is available at https://uploads.strikinglycdn.com/files/
ec5278f8-218c-407a-af3c-ab71a910246d/RSK%20White%20Paper%20-%20Overview.
pdf should you want to explore it further.

Further information on Rootstock is available at http://www.rsk.co/.



Chapter 23 737

• Turbine for efficient block propagation by breaking blocks into smaller 64 KB packets and 
streaming them over UDP through a random path implemented per packet through the network.

• Parallel execution of smart contracts through a runtime called Sealevel. Parallel execution is 
made possible because Solana transactions preemptively know all states it will read or write, 
which allows for the concurrent execution of transactions.

• Optimized transaction validation through a pipelined transaction processing unit.
• A horizontally scalable database called Cloudbreak, which leverages memory-mapped files 

and sequential operations to gain speed and efficiency. 
• Archivers for distributed ledger storage to store ledger data.

Note that PoH is not a consensus algorithm, but it enables the ordering of events using a cryptographic 
clock and leads to consensus. Tower BFT is derived from PBFT and PoH reduces message complexity 
in a BFT protocol, resulting in high throughput and sub-second finality times.

Solana uses proof of stake and Tower BFT as its consensus algorithms. PoH is a key innovation that 
allows for a self-consistent record of events by proving the order and passage of time between events 
without relying on an external source. This leads to reduced communication complexity and improved 
performance.

Proof of History
Note that time in distributed systems is crucial. If time is synchronized among processes, i.e., a syn-
chronized clock is available in a distributed network, then communication complexity can be reduced, 
which results in improved performance. In addition, a node can deduce information from past events 
instead of asking another node repeatedly about some information. For example, with the availability 
of a global clock where all nodes are synchronized, the system can establish a system-wide history 
of events. For example, a timestamp on an event can inform a node when this event occurred on the 
globally synchronized time across the network instead of asking a node who produced that event 
when this event occurred.

Another application of a synchronized clock is that entities in the system can deduce if something has 
expired; e.g., a timestamped security token can immediately tell a node how much time has elapsed 
since its creation. The node can infer if it is valid anymore or not and not something that occurred in 
the distant past, making this token no longer applicable and expired.

In replication protocols, clock synchronization also plays a crucial role. If nodes have synchronized 
clocks, that can lead to consistency because every node will have the same view of the order of events.

The system can only establish a global notion of time and history if the time is synchronized among 
nodes. It is usually possible in practical systems using the NTP protocol.

So far, we have established that synchronized time is a valuable construct in distributed systems for 
performance gains. In other words, if we can replace communication with local computation, we can 
gain tremendous efficiency.

Also, synchrony and time together solve consensus quickly and easily. Safety and liveness are the two 
fundamental requirements and are easy to implement with a trusted clock and synchronous network.



Alternative Blockchains738

However, networks are empirically asynchronous. We also know that a trusted synchronized clock in 
distributed networks is difficult to maintain. Blockchain and distributed systems are characterized by 
no clocks, making them slow due to inherent asynchrony and the need for complex message passing 
for ordering events and agreements.

On the other hand, a reliable, trusted clock makes network synchronization much simpler and quicker, 
which leads to high-speed networks. Solana’s PoH allows the system to keep time reliably between 
non-trusting computers. In short, PoH enables clocks in clockless blockchains.

Solana’s PoH is a way to establish the history and provide that global notion of synchronized time among 
nodes in a distributed network. The key innovation here is that it does not use any external source 
of time and synchronize nodes using that, e.g., via the NTP protocol; instead, it uses a cryptographic 
proof to show that some time has passed, and other nodes directly accept this history of events due to 
cryptographic guarantees. So, instead of relying on a global time source, this mechanism is built into 
validators that generate a sequence of events with proof of when an event occurred. The following is 
an explanation of how it works.

In a blockchain network, the right to add a new block is won after solving a puzzle, i.e., PoW, which 
takes a long time. Although this mechanism is secure and thwarts Sybil attacks (as seen in Chapter 5), 
it is slow. Furthermore, in some chains, a BFT-style consensus is used. In that case, the leader valida-
tor who proposes a block only gets to commit after at least two sequential phases, which is also time 
consuming even in normal conditions. Under failure conditions, it can further slow down with new 
leader selection (election) and view changes. What if, somehow, there is a deterministic leader election 
algorithm that can select leaders in quick succession, and each leader quickly proposes new blocks? 
Then, the algorithm moves to the next leader, and so on. All this without going through a complex 
leader election process, acknowledgment from other nodes, and running multiple phases to reach a 
consensus. The problem here is that it’s quick to create a deterministic algorithm that can select the 
next leader, but how do we ensure that what the alogrithm proposes is correct and that the selected 
leaders are not malicious and do not censor transactions or exhibit other malicious behaviors?

This is where PoH comes in. In Solana, one leader at a time processes transactions and updates the 
state. Other validators read the state and send votes to the leader to confirm them. This activity is 
split into very short successive sessions where one leader after another performs this. The ledger is 
divided into small intervals. These small intervals are 400 ms each. The leader rotation schedule is 
predetermined and generated randomly based on factors such as the stake and execution of previous 
transactions. But how can we ensure that the leader rotation is done at the right time and malicious 
actors cannot skip a leader’s turn or censor transactions?



Chapter 23 739

In PoH, the passage of time is proven by creating a sequence of these hashes as shown in Figure 22.8:

Figure 22.8: Solana PoH sequence

Here, in the figure, a sequence of hash operations is shown. The genesis input (shown at the left in the 
diagram) is first provided to the hash function. In the next iteration, the output of the previous hash 
function is used as input to the hash function, and this process continues indefinitely. This sequence 
is generated using the SHA256 function on a single core. This process cannot parallelize it because 
the output of the previous hash function can only be known if and only if the hash function has pro-
cessed the previous input. It is assumed that the functions are cryptographic hash functions that are 
pre-image resistant. Therefore, this is a purely sequential function. However, this sequence can be 
verified in parallel using multicore GPUs. As all the inputs and outputs are available, it becomes just a 
matter of verifying each output, which GPUs can do in parallel. This property makes this sequence a 
Verifiable Delay Function (VDF) because the time taken (i.e., delay) in generating the hash sequence 
can be verified using quick parallel verification. However, there is some debate between cryptographic 
VDFs introduced by researchers at Stanford and hardware VDFs introduced by Solana researchers.

We can then sample this sequence at regular intervals to provide a notion of the passage of time. This 
is so because hash generation takes some CPU time (roughly 1.75 cycles for SHA25 instruction on an 
Intel or AMD CPU), and this process is purely sequential. We can infer from this sequence that some 
time has passed because generating hashes takes time. Therefore, looking at this sequence from the 
first to the most recent hash, we can view this sequence of hashes as a representation of passing time.

Since the algorithm generated the first hash in the sequence, some time has been taken up by the 
hash generation process for each hash that comes after it until the latest hash in the series, meaning 
some time has passed since the first hash was generated. Furthermore, if we can also add some data 
with the input hash to the hash function, then we can also deduce that this data must have existed 
before the next hash and after the previous hash. Thus, this sequence of hashes becomes PoH, proving 
cryptographically that some events, such as event e, occurred before event f and after event d.

It is a sequential process that runs SHA256 repeatedly and continuously, using its previous output 
as input. It periodically records a counter for each output sample, e.g., records every 1 second the 
current state (hash output), similar to a clock ticking. Looking at this structure of sampled hashes at 
regular intervals, we can infer that some time has passed. It is impossible to parallelize because the 
previous output is the input for the next iteration. 



Alternative Blockchains740

For example, we can say time passed between counter 1 and counter N (Figure 22.8), where time is 
the SHA256 counter. We can approximate real time from this count. We can also associate some data, 
which we can append to the input of the hash function; once hashed, we can be sure that data must 
have existed before the hash is generated. This structure can only be generated in sequence; however, 
we can verify it in parallel. For example, if 4,000 samples took 40 seconds to produce, it will take only 
1 second to verify the entire data structure with a 4,000-core GPU.

The key idea is that PoH transactional throughput is separated from consensus, which is key to scaling. 
Note that the order of events generated, i.e., the sequence, is not globally unique. Therefore, a con-
sensus mechanism is needed to ascertain the true chain, as anyone can generate an alternate history.

PoH is a cryptographically proven way of saying that time has elapsed. It can be seen as an applica-
tion-specific verifiable delay function. It encodes the passage of time as data using SHA-256 hashing 
to hash the incoming events and transactions. It produces a unique hash and count of each event, 
producing a verifiable ordering of events as a function of time. This means that the time and ordering 
of events can be agreed upon without waiting to hear from other nodes. In other words, there is no 
weak subjectivity where nodes must rely on other nodes to determine the system’s current state. This 
results in high throughput because the information that is usually required to be provided by other 
nodes is already there in the sequence generated by the PoH mechanism and is cryptographically 
verifiable, ensuring integrity. This means that the protocol can enforce a global order without going 
through a communication-wise complex agreement protocol or trusting an external source of time 
for clock synchronization. In summary, instead of trusting the timestamp, PoH allows the creation 
of a historical record proving that an event e occurred at a particular point in time t, before another 
event f and after an event d. In summary, two key benefits of PoH are: 

• Provides a means for trustless ordering of events
• It increases the block production frequency significantly because nodes can select a new block 

proposer leader without communicating

PoH leadership can be switched without needing to communicate with other nodes, resulting in 
increased block production frequency. PoH results in high node scalability and low communication 
complexity compared to BFT-style protocols with high communication complexity and limited node 
capacity. It provides global read consistency and a cryptographically verifiable passage of time between 
two events. With PoH, nodes can trust the ordering and timing of events, even before the consensus 
stage is reached. In other words, it’s a “clock before the consensus” approach. The consensus then 
works by voting on different branches, where nodes vote on a branch they believe is the main chain. 
Over time, by keeping voting on the chain they first voted on and not voting on another branch, they 
earn rewards and, eventually, the other branch orphans out.

For voting purposes, Tower BFT is used, which is a variant of PBFT. It is a voting and fork selection 
algorithm. It is used to vote on the chains produced by PoH to select the true canonical chain. It is 
less complex communication wise because PoH has already provided an order, and now a decision is 
only required on the choice of canonical chain. Moreover, PoH provides the timing of events before 
consensus initiates, and Tower BFT is then used for voting on the canonical chain. 



Chapter 23 741

Tower BFT is byzantine fault tolerant because once two thirds of validators have voted on a chain (hash), 
it cannot be rolled back. Validators vote on a PoH hash for two reasons; first, to decide that the ledger 
is valid until the hash for which they are voting, i.e., a point in time, and second, to support a fork at 
a given height, as many forks can exist at a given chain height. Furthermore, PoS in Solana is used for 
economics and governance to control slashing, inflation, supply, and penalties.

Storage layer blockchain projects
In this section, we introduce some projects that use the principles of blockchain technology to provide 
decentralized storage systems that can be used by blockchains or by any other project that wishes to 
use decentralized storage. These projects include Storj, MaidSafe, and BigchainDB.

Storj
Existing models for cloud-based storage are all centralized solutions, which may or may not be as 
secure as users expect them to be. We need cloud storage systems that are secure, highly available, 
and above all decentralized. Storj aims to provide blockchain-based, decentralized, and distributed 
storage. It is a cloud shared by the community instead of a central organization.

It allows the execution of storage contracts between nodes that act as autonomous agents. These 
agents (nodes) execute various functions such as data transfer, validation, and data integrity checks.

Storj’s core concept is based on a Distributed Hash Table (DHT) called Kademlia. However, Storj’s 
protocol has been enhanced by adding new message types and functionalities. It also implements a 
P2P publish/subscribe (pub/sub) mechanism known as Quasar, which ensures that messages success-
fully reach the nodes that are interested in storage contracts. This is achieved via a storage contract 
parameter selection mechanism based on Bloom filters.

Storj stores files in an encrypted format spread across the network. Before the file is stored on the 
network, it is encrypted using AES-256-CTR symmetric encryption and is then stored piece by piece in 
a distributed manner on the network. This process of dissecting the file into pieces is called sharding 
and results in the increased availability, security, performance, and privacy of the network. Also, if 
a node fails, the shard is still available because, by default, a single shard is stored at three different 
locations on the network.

It maintains a blockchain, which serves as a shared ledger and implements standard security features 
such as public/private key cryptography and hash functions, similar to any other blockchain. As the 
system is based on hard drive sharing between peers, anyone can contribute by sharing the extra 
space on their drive and get paid with Storj’s own cryptocurrency, called Storjcoin X (SJCX). SJCX 
was developed as a Counterparty asset and makes use of the Bitcoin blockchain-based Counterparty 
platform for transactions. This has now been migrated to Ethereum.

A detailed discussion is available at https://blog.storj.io/post/158740607128/
migration-from-counterparty-to-ethereum.

The Storj code is available at https://github.com/Storj/.



Alternative Blockchains742

MaidSafe
This is another distributed storage system similar to Storj. Users are paid in SafeCoin for their storage 
space contributions to the network. This mechanism of payment is governed by proof of resource, 
which ensures that the disk space committed by a user to the network is available; if not, then the 
payment of SafeCoin will drop accordingly. The files are encrypted and divided into small portions 
before being transmitted onto the network for storage.

Another concept of opportunistic caching has been introduced with MaidSafe, which is a mechanism 
to create copies of frequently accessed data physically closer to where the access requests are coming 
from, which results in the high performance of the network. Another novel feature of MaidSafe’s 
network (the SAFE network) is that it automatically removes any duplicate data on the network, thus 
resulting in reduced storage requirements.

Moreover, the concept of churning has also been introduced, which basically means that data is 
constantly moved across the network so that the data cannot be targeted by malicious adversaries. 
Churning also keeps multiple copies of data across the network to provide redundancy in case a node 
goes offline or fails.

Other platforms
This section will briefly consider some novel platforms that have introduced some innovative ideas 
to blockchain technology.

MultiChain
MultiChain has been developed as a platform for the development and deployment of private block-
chains. It is based on Bitcoin code and addresses security, scalability, and privacy issues. It is a highly 
configurable blockchain platform that allows users to set different blockchain parameters. It supports 
control and privacy via a granular permissioning layer. The installation of MultiChain is very quick.

Tendermint
Tendermint is software that provides a BFT consensus mechanism and state machine replication 
functionality to an application. Its main motivation is to develop a general-purpose, secure, and 
high-performance replicated state machine.

To install MultiChain, this link can be followed: http://www.multichain.com/download-
install/.



Chapter 23 743

There are two components of Tendermint, which are described in the following sections.

Tendermint Core
This is a consensus engine that enables the secure replication of transactions on each node in the 
network.

Tendermint Socket Protocol
Tendermint Socket Protocol (TMSP) is an application interface protocol that allows interfacing with 
any programming language to process transactions. Tendermint allows for the decoupling of the appli-
cation consensus processes, which allows any application to benefit from the consensus mechanism.

Tendermint consensus algorithm
The Tendermint consensus algorithm is a round-based mechanism where validator nodes propose 
new blocks in each round. A locking mechanism is used to ensure protection against a scenario where 
two different blocks are selected to be committed at the same height of the blockchain. Each validator 
node maintains a full locally replicated ledger of blocks that contain transactions. Each block contains 
a header, which consists of the previous block hash, the timestamp of the proposal of the block, the 
current block height, and the Merkle root hash of all transactions present in the block.

Cosmos
Tendermint has recently been used in Cosmos (https://cosmos.network), which is a network of block-
chains that allows interoperability between different chains running on the BFT consensus algorithm. 
Blockchains on this network are called zones. The first zone in Cosmos is called Cosmos Hub, which 
is, in fact, a public blockchain and is responsible for providing connectivity services to other block-
chains. For this purpose, the hub makes use of the Inter Blockchain Communication (IBC) protocol. 
The IBC protocol supports two types of transactions called IBCBlockCimmitTx and IBCPacketTx. The 
first type is used to provide proof of the most recent block hash in a blockchain to any party, whereas 
the latter type is used to provide data origin authentication. A packet from one blockchain to another 
is published by first posting a proof to the target chain. The receiving (target) chain checks this proof 
in order to verify that the sending chain has indeed published the packet. In addition, Cosmos has its 
own native currency called Atom. This scheme addresses scalability and interoperability issues by 
allowing multiple blockchains to connect to the hub.

In this vast ecosystem of blockchains and networks, several initiatives have been taken to introduce 
more feature-rich platforms with better security, interoperability, developer tools, and toolkits.

 Tendermint is available at https://tendermint.com/.



Alternative Blockchains744

Summary
This brings our introduction to some innovative blockchain-based platform services to an end. We 
started with an introduction to alternative blockchains, which was divided into two main sections, 
one discussing blockchains and the other assorted platforms and tools. Blockchain technology is a 
thriving area; as such, changes are quite rapid in existing solutions and new technologies and tools are 
being introduced almost every day. In this chapter, a careful selection of platforms and blockchains 
was introduced. New blockchains such as Solana, various protocols such as Ripple and Kadena, and 
concepts such as sidechains and drivechains were also discussed.

The material covered is intended to provide a strong foundation for more in-depth research into 
areas that readers are interested in. As said before, blockchain is a very fast-moving field, and there 
are many other blockchain projects. A simple internet search would reveal many projects. Readers 
are encouraged to keep an eye on any developments in this field to keep themselves up to date with 
advancements in this rapidly growing area, but a few were discussed in the chapter to give an idea 
of current projects.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below: 

https://packt.link/ips2H


